Add at new repo again
This commit is contained in:
commit
6e660ddb3c
15
requirements.txt
Normal file
15
requirements.txt
Normal file
@ -0,0 +1,15 @@
|
||||
torch==2.4.0
|
||||
torchvision==0.19.0
|
||||
accelerate==0.31.0
|
||||
diffusers==0.31.0
|
||||
transformers==4.39.3
|
||||
gradio==5.8.0
|
||||
numpy==1.23.0
|
||||
scikit-image==0.24.0
|
||||
huggingface_hub==0.26.5
|
||||
onnxruntime==1.20.1
|
||||
opencv-python
|
||||
matplotlib==3.8.3
|
||||
einops==0.7.0
|
||||
fastapi[all]
|
||||
|
BIN
tests/imgs/garment.jpg
Normal file
BIN
tests/imgs/garment.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 732 KiB |
BIN
tests/imgs/person.jpg
Normal file
BIN
tests/imgs/person.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 26 KiB |
BIN
tests/results/result_20250128_214611_0.png
Normal file
BIN
tests/results/result_20250128_214611_0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 672 KiB |
55
tests/test.py
Normal file
55
tests/test.py
Normal file
@ -0,0 +1,55 @@
|
||||
import requests
|
||||
import base64
|
||||
import os
|
||||
from PIL import Image
|
||||
import io
|
||||
from datetime import datetime
|
||||
|
||||
def image_to_base64(image_path):
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode()
|
||||
|
||||
def base64_to_image(base64_str):
|
||||
image_data = base64.b64decode(base64_str)
|
||||
return Image.open(io.BytesIO(image_data))
|
||||
|
||||
def save_results(generated_images, output_dir="results"):
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
||||
saved_paths = []
|
||||
for idx, img_base64 in enumerate(generated_images):
|
||||
img = base64_to_image(img_base64)
|
||||
output_path = os.path.join(output_dir, f"result_{timestamp}_{idx}.png")
|
||||
img.save(output_path)
|
||||
saved_paths.append(output_path)
|
||||
print(f"Saved image to {output_path}")
|
||||
|
||||
return saved_paths
|
||||
|
||||
data = {
|
||||
"model_image": image_to_base64("imgs/person.jpg"),
|
||||
"garment_image": image_to_base64("imgs/garment.jpg"),
|
||||
"category": "Upper-body",
|
||||
"resolution": "768x1024",
|
||||
"n_steps": 30,
|
||||
"image_scale": 2.0,
|
||||
"num_images": 1
|
||||
}
|
||||
|
||||
try:
|
||||
response = requests.post("http://localhost:8001/try-on", json=data)
|
||||
response.raise_for_status()
|
||||
result = response.json()
|
||||
|
||||
if result["status"] == "success":
|
||||
saved_files = save_results(result["generated_images"])
|
||||
print(f"Successfully generated {len(saved_files)} images")
|
||||
print(f"Seed used: {result['seed']}")
|
||||
else:
|
||||
print("Generation failed:", result.get("detail", "Unknown error"))
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
print(f"Error making request: {e}")
|
||||
except Exception as e:
|
||||
print(f"Error processing results: {e}")
|
68
vton-api/preprocess/dwpose/__init__.py
Normal file
68
vton-api/preprocess/dwpose/__init__.py
Normal file
@ -0,0 +1,68 @@
|
||||
# Openpose
|
||||
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
||||
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
||||
# 3rd Edited by ControlNet
|
||||
# 4th Edited by ControlNet (added face and correct hands)
|
||||
|
||||
import os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from . import util
|
||||
from .wholebody import Wholebody
|
||||
|
||||
def draw_pose(pose, H, W):
|
||||
bodies = pose['bodies']
|
||||
faces = pose['faces']
|
||||
hands = pose['hands']
|
||||
candidate = bodies['candidate']
|
||||
subset = bodies['subset']
|
||||
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
||||
|
||||
canvas = util.draw_bodypose(canvas, candidate, subset)
|
||||
|
||||
canvas = util.draw_handpose(canvas, hands)
|
||||
|
||||
canvas = util.draw_facepose(canvas, faces)
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
class DWposeDetector:
|
||||
def __init__(self, model_root, device):
|
||||
|
||||
self.pose_estimation = Wholebody(model_root, device)
|
||||
|
||||
def __call__(self, oriImg):
|
||||
oriImg = oriImg.copy()
|
||||
H, W, C = oriImg.shape
|
||||
with torch.no_grad():
|
||||
candidate, subset = self.pose_estimation(oriImg)
|
||||
nums, keys, locs = candidate.shape
|
||||
candidate[..., 0] /= float(W)
|
||||
candidate[..., 1] /= float(H)
|
||||
body = candidate[:,:18].copy()
|
||||
body = body.reshape(nums*18, locs)
|
||||
ori_score = subset[:,:18].copy()
|
||||
score = subset[:,:18].copy()
|
||||
for i in range(len(score)):
|
||||
for j in range(len(score[i])):
|
||||
if score[i][j] > 0.3:
|
||||
score[i][j] = int(18*i+j)
|
||||
else:
|
||||
score[i][j] = -1
|
||||
|
||||
un_visible = subset<0.3
|
||||
candidate[un_visible] = -1
|
||||
|
||||
foot = candidate[:,18:24]
|
||||
|
||||
faces = candidate[:,24:92]
|
||||
|
||||
hands = candidate[:,92:113]
|
||||
hands = np.vstack([hands, candidate[:,113:]])
|
||||
|
||||
bodies = dict(candidate=body, subset=score)
|
||||
pose = dict(bodies=bodies, hands=hands, faces=faces)
|
||||
return draw_pose(pose, H, W), body, ori_score, candidate
|
BIN
vton-api/preprocess/dwpose/__pycache__/__init__.cpython-311.pyc
Normal file
BIN
vton-api/preprocess/dwpose/__pycache__/__init__.cpython-311.pyc
Normal file
Binary file not shown.
BIN
vton-api/preprocess/dwpose/__pycache__/onnxdet.cpython-311.pyc
Normal file
BIN
vton-api/preprocess/dwpose/__pycache__/onnxdet.cpython-311.pyc
Normal file
Binary file not shown.
BIN
vton-api/preprocess/dwpose/__pycache__/onnxpose.cpython-311.pyc
Normal file
BIN
vton-api/preprocess/dwpose/__pycache__/onnxpose.cpython-311.pyc
Normal file
Binary file not shown.
BIN
vton-api/preprocess/dwpose/__pycache__/util.cpython-311.pyc
Normal file
BIN
vton-api/preprocess/dwpose/__pycache__/util.cpython-311.pyc
Normal file
Binary file not shown.
BIN
vton-api/preprocess/dwpose/__pycache__/wholebody.cpython-311.pyc
Normal file
BIN
vton-api/preprocess/dwpose/__pycache__/wholebody.cpython-311.pyc
Normal file
Binary file not shown.
125
vton-api/preprocess/dwpose/onnxdet.py
Normal file
125
vton-api/preprocess/dwpose/onnxdet.py
Normal file
@ -0,0 +1,125 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import onnxruntime
|
||||
|
||||
def nms(boxes, scores, nms_thr):
|
||||
"""Single class NMS implemented in Numpy."""
|
||||
x1 = boxes[:, 0]
|
||||
y1 = boxes[:, 1]
|
||||
x2 = boxes[:, 2]
|
||||
y2 = boxes[:, 3]
|
||||
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
xx1 = np.maximum(x1[i], x1[order[1:]])
|
||||
yy1 = np.maximum(y1[i], y1[order[1:]])
|
||||
xx2 = np.minimum(x2[i], x2[order[1:]])
|
||||
yy2 = np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w = np.maximum(0.0, xx2 - xx1 + 1)
|
||||
h = np.maximum(0.0, yy2 - yy1 + 1)
|
||||
inter = w * h
|
||||
ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
||||
|
||||
inds = np.where(ovr <= nms_thr)[0]
|
||||
order = order[inds + 1]
|
||||
|
||||
return keep
|
||||
|
||||
def multiclass_nms(boxes, scores, nms_thr, score_thr):
|
||||
"""Multiclass NMS implemented in Numpy. Class-aware version."""
|
||||
final_dets = []
|
||||
num_classes = scores.shape[1]
|
||||
for cls_ind in range(num_classes):
|
||||
cls_scores = scores[:, cls_ind]
|
||||
valid_score_mask = cls_scores > score_thr
|
||||
if valid_score_mask.sum() == 0:
|
||||
continue
|
||||
else:
|
||||
valid_scores = cls_scores[valid_score_mask]
|
||||
valid_boxes = boxes[valid_score_mask]
|
||||
keep = nms(valid_boxes, valid_scores, nms_thr)
|
||||
if len(keep) > 0:
|
||||
cls_inds = np.ones((len(keep), 1)) * cls_ind
|
||||
dets = np.concatenate(
|
||||
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
||||
)
|
||||
final_dets.append(dets)
|
||||
if len(final_dets) == 0:
|
||||
return None
|
||||
return np.concatenate(final_dets, 0)
|
||||
|
||||
def demo_postprocess(outputs, img_size, p6=False):
|
||||
grids = []
|
||||
expanded_strides = []
|
||||
strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
||||
|
||||
hsizes = [img_size[0] // stride for stride in strides]
|
||||
wsizes = [img_size[1] // stride for stride in strides]
|
||||
|
||||
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
||||
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
||||
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
||||
grids.append(grid)
|
||||
shape = grid.shape[:2]
|
||||
expanded_strides.append(np.full((*shape, 1), stride))
|
||||
|
||||
grids = np.concatenate(grids, 1)
|
||||
expanded_strides = np.concatenate(expanded_strides, 1)
|
||||
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
||||
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
||||
|
||||
return outputs
|
||||
|
||||
def preprocess(img, input_size, swap=(2, 0, 1)):
|
||||
if len(img.shape) == 3:
|
||||
padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
||||
else:
|
||||
padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
||||
|
||||
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
||||
resized_img = cv2.resize(
|
||||
img,
|
||||
(int(img.shape[1] * r), int(img.shape[0] * r)),
|
||||
interpolation=cv2.INTER_LINEAR,
|
||||
).astype(np.uint8)
|
||||
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
||||
|
||||
padded_img = padded_img.transpose(swap)
|
||||
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
||||
return padded_img, r
|
||||
|
||||
def inference_detector(session, oriImg):
|
||||
input_shape = (640,640)
|
||||
img, ratio = preprocess(oriImg, input_shape)
|
||||
|
||||
ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
||||
output = session.run(None, ort_inputs)
|
||||
predictions = demo_postprocess(output[0], input_shape)[0]
|
||||
|
||||
boxes = predictions[:, :4]
|
||||
scores = predictions[:, 4:5] * predictions[:, 5:]
|
||||
|
||||
boxes_xyxy = np.ones_like(boxes)
|
||||
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
|
||||
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
|
||||
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
|
||||
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
|
||||
boxes_xyxy /= ratio
|
||||
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
||||
if dets is not None:
|
||||
final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
||||
isscore = final_scores>0.3
|
||||
iscat = final_cls_inds == 0
|
||||
isbbox = [ i and j for (i, j) in zip(isscore, iscat)]
|
||||
final_boxes = final_boxes[isbbox]
|
||||
else:
|
||||
final_boxes = np.array([])
|
||||
|
||||
return final_boxes
|
360
vton-api/preprocess/dwpose/onnxpose.py
Normal file
360
vton-api/preprocess/dwpose/onnxpose.py
Normal file
@ -0,0 +1,360 @@
|
||||
from typing import List, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
def preprocess(
|
||||
img: np.ndarray, out_bbox, input_size: Tuple[int, int] = (192, 256)
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Do preprocessing for RTMPose model inference.
|
||||
|
||||
Args:
|
||||
img (np.ndarray): Input image in shape.
|
||||
input_size (tuple): Input image size in shape (w, h).
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- resized_img (np.ndarray): Preprocessed image.
|
||||
- center (np.ndarray): Center of image.
|
||||
- scale (np.ndarray): Scale of image.
|
||||
"""
|
||||
# get shape of image
|
||||
img_shape = img.shape[:2]
|
||||
out_img, out_center, out_scale = [], [], []
|
||||
if len(out_bbox) == 0:
|
||||
out_bbox = [[0, 0, img_shape[1], img_shape[0]]]
|
||||
for i in range(len(out_bbox)):
|
||||
x0 = out_bbox[i][0]
|
||||
y0 = out_bbox[i][1]
|
||||
x1 = out_bbox[i][2]
|
||||
y1 = out_bbox[i][3]
|
||||
bbox = np.array([x0, y0, x1, y1])
|
||||
|
||||
# get center and scale
|
||||
center, scale = bbox_xyxy2cs(bbox, padding=1.25)
|
||||
|
||||
# do affine transformation
|
||||
resized_img, scale = top_down_affine(input_size, scale, center, img)
|
||||
|
||||
# normalize image
|
||||
mean = np.array([123.675, 116.28, 103.53])
|
||||
std = np.array([58.395, 57.12, 57.375])
|
||||
resized_img = (resized_img - mean) / std
|
||||
|
||||
out_img.append(resized_img)
|
||||
out_center.append(center)
|
||||
out_scale.append(scale)
|
||||
|
||||
return out_img, out_center, out_scale
|
||||
|
||||
|
||||
def inference(sess: ort.InferenceSession, img: np.ndarray) -> np.ndarray:
|
||||
"""Inference RTMPose model.
|
||||
|
||||
Args:
|
||||
sess (ort.InferenceSession): ONNXRuntime session.
|
||||
img (np.ndarray): Input image in shape.
|
||||
|
||||
Returns:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
"""
|
||||
all_out = []
|
||||
# build input
|
||||
for i in range(len(img)):
|
||||
input = [img[i].transpose(2, 0, 1)]
|
||||
|
||||
# build output
|
||||
sess_input = {sess.get_inputs()[0].name: input}
|
||||
sess_output = []
|
||||
for out in sess.get_outputs():
|
||||
sess_output.append(out.name)
|
||||
|
||||
# run model
|
||||
outputs = sess.run(sess_output, sess_input)
|
||||
all_out.append(outputs)
|
||||
|
||||
return all_out
|
||||
|
||||
|
||||
def postprocess(outputs: List[np.ndarray],
|
||||
model_input_size: Tuple[int, int],
|
||||
center: Tuple[int, int],
|
||||
scale: Tuple[int, int],
|
||||
simcc_split_ratio: float = 2.0
|
||||
) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Postprocess for RTMPose model output.
|
||||
|
||||
Args:
|
||||
outputs (np.ndarray): Output of RTMPose model.
|
||||
model_input_size (tuple): RTMPose model Input image size.
|
||||
center (tuple): Center of bbox in shape (x, y).
|
||||
scale (tuple): Scale of bbox in shape (w, h).
|
||||
simcc_split_ratio (float): Split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- keypoints (np.ndarray): Rescaled keypoints.
|
||||
- scores (np.ndarray): Model predict scores.
|
||||
"""
|
||||
all_key = []
|
||||
all_score = []
|
||||
for i in range(len(outputs)):
|
||||
# use simcc to decode
|
||||
simcc_x, simcc_y = outputs[i]
|
||||
keypoints, scores = decode(simcc_x, simcc_y, simcc_split_ratio)
|
||||
|
||||
# rescale keypoints
|
||||
keypoints = keypoints / model_input_size * scale[i] + center[i] - scale[i] / 2
|
||||
all_key.append(keypoints[0])
|
||||
all_score.append(scores[0])
|
||||
|
||||
return np.array(all_key), np.array(all_score)
|
||||
|
||||
|
||||
def bbox_xyxy2cs(bbox: np.ndarray,
|
||||
padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Transform the bbox format from (x,y,w,h) into (center, scale)
|
||||
|
||||
Args:
|
||||
bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted
|
||||
as (left, top, right, bottom)
|
||||
padding (float): BBox padding factor that will be multilied to scale.
|
||||
Default: 1.0
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
- np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or
|
||||
(n, 2)
|
||||
"""
|
||||
# convert single bbox from (4, ) to (1, 4)
|
||||
dim = bbox.ndim
|
||||
if dim == 1:
|
||||
bbox = bbox[None, :]
|
||||
|
||||
# get bbox center and scale
|
||||
x1, y1, x2, y2 = np.hsplit(bbox, [1, 2, 3])
|
||||
center = np.hstack([x1 + x2, y1 + y2]) * 0.5
|
||||
scale = np.hstack([x2 - x1, y2 - y1]) * padding
|
||||
|
||||
if dim == 1:
|
||||
center = center[0]
|
||||
scale = scale[0]
|
||||
|
||||
return center, scale
|
||||
|
||||
|
||||
def _fix_aspect_ratio(bbox_scale: np.ndarray,
|
||||
aspect_ratio: float) -> np.ndarray:
|
||||
"""Extend the scale to match the given aspect ratio.
|
||||
|
||||
Args:
|
||||
scale (np.ndarray): The image scale (w, h) in shape (2, )
|
||||
aspect_ratio (float): The ratio of ``w/h``
|
||||
|
||||
Returns:
|
||||
np.ndarray: The reshaped image scale in (2, )
|
||||
"""
|
||||
w, h = np.hsplit(bbox_scale, [1])
|
||||
bbox_scale = np.where(w > h * aspect_ratio,
|
||||
np.hstack([w, w / aspect_ratio]),
|
||||
np.hstack([h * aspect_ratio, h]))
|
||||
return bbox_scale
|
||||
|
||||
|
||||
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray:
|
||||
"""Rotate a point by an angle.
|
||||
|
||||
Args:
|
||||
pt (np.ndarray): 2D point coordinates (x, y) in shape (2, )
|
||||
angle_rad (float): rotation angle in radian
|
||||
|
||||
Returns:
|
||||
np.ndarray: Rotated point in shape (2, )
|
||||
"""
|
||||
sn, cs = np.sin(angle_rad), np.cos(angle_rad)
|
||||
rot_mat = np.array([[cs, -sn], [sn, cs]])
|
||||
return rot_mat @ pt
|
||||
|
||||
|
||||
def _get_3rd_point(a: np.ndarray, b: np.ndarray) -> np.ndarray:
|
||||
"""To calculate the affine matrix, three pairs of points are required. This
|
||||
function is used to get the 3rd point, given 2D points a & b.
|
||||
|
||||
The 3rd point is defined by rotating vector `a - b` by 90 degrees
|
||||
anticlockwise, using b as the rotation center.
|
||||
|
||||
Args:
|
||||
a (np.ndarray): The 1st point (x,y) in shape (2, )
|
||||
b (np.ndarray): The 2nd point (x,y) in shape (2, )
|
||||
|
||||
Returns:
|
||||
np.ndarray: The 3rd point.
|
||||
"""
|
||||
direction = a - b
|
||||
c = b + np.r_[-direction[1], direction[0]]
|
||||
return c
|
||||
|
||||
|
||||
def get_warp_matrix(center: np.ndarray,
|
||||
scale: np.ndarray,
|
||||
rot: float,
|
||||
output_size: Tuple[int, int],
|
||||
shift: Tuple[float, float] = (0., 0.),
|
||||
inv: bool = False) -> np.ndarray:
|
||||
"""Calculate the affine transformation matrix that can warp the bbox area
|
||||
in the input image to the output size.
|
||||
|
||||
Args:
|
||||
center (np.ndarray[2, ]): Center of the bounding box (x, y).
|
||||
scale (np.ndarray[2, ]): Scale of the bounding box
|
||||
wrt [width, height].
|
||||
rot (float): Rotation angle (degree).
|
||||
output_size (np.ndarray[2, ] | list(2,)): Size of the
|
||||
destination heatmaps.
|
||||
shift (0-100%): Shift translation ratio wrt the width/height.
|
||||
Default (0., 0.).
|
||||
inv (bool): Option to inverse the affine transform direction.
|
||||
(inv=False: src->dst or inv=True: dst->src)
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2x3 transformation matrix
|
||||
"""
|
||||
shift = np.array(shift)
|
||||
src_w = scale[0]
|
||||
dst_w = output_size[0]
|
||||
dst_h = output_size[1]
|
||||
|
||||
# compute transformation matrix
|
||||
rot_rad = np.deg2rad(rot)
|
||||
src_dir = _rotate_point(np.array([0., src_w * -0.5]), rot_rad)
|
||||
dst_dir = np.array([0., dst_w * -0.5])
|
||||
|
||||
# get four corners of the src rectangle in the original image
|
||||
src = np.zeros((3, 2), dtype=np.float32)
|
||||
src[0, :] = center + scale * shift
|
||||
src[1, :] = center + src_dir + scale * shift
|
||||
src[2, :] = _get_3rd_point(src[0, :], src[1, :])
|
||||
|
||||
# get four corners of the dst rectangle in the input image
|
||||
dst = np.zeros((3, 2), dtype=np.float32)
|
||||
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
|
||||
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
|
||||
dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :])
|
||||
|
||||
if inv:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src))
|
||||
else:
|
||||
warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
||||
|
||||
return warp_mat
|
||||
|
||||
|
||||
def top_down_affine(input_size: dict, bbox_scale: dict, bbox_center: dict,
|
||||
img: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get the bbox image as the model input by affine transform.
|
||||
|
||||
Args:
|
||||
input_size (dict): The input size of the model.
|
||||
bbox_scale (dict): The bbox scale of the img.
|
||||
bbox_center (dict): The bbox center of the img.
|
||||
img (np.ndarray): The original image.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: img after affine transform.
|
||||
- np.ndarray[float32]: bbox scale after affine transform.
|
||||
"""
|
||||
w, h = input_size
|
||||
warp_size = (int(w), int(h))
|
||||
|
||||
# reshape bbox to fixed aspect ratio
|
||||
bbox_scale = _fix_aspect_ratio(bbox_scale, aspect_ratio=w / h)
|
||||
|
||||
# get the affine matrix
|
||||
center = bbox_center
|
||||
scale = bbox_scale
|
||||
rot = 0
|
||||
warp_mat = get_warp_matrix(center, scale, rot, output_size=(w, h))
|
||||
|
||||
# do affine transform
|
||||
img = cv2.warpAffine(img, warp_mat, warp_size, flags=cv2.INTER_LINEAR)
|
||||
|
||||
return img, bbox_scale
|
||||
|
||||
|
||||
def get_simcc_maximum(simcc_x: np.ndarray,
|
||||
simcc_y: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Get maximum response location and value from simcc representations.
|
||||
|
||||
Note:
|
||||
instance number: N
|
||||
num_keypoints: K
|
||||
heatmap height: H
|
||||
heatmap width: W
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray): x-axis SimCC in shape (K, Wx) or (N, K, Wx)
|
||||
simcc_y (np.ndarray): y-axis SimCC in shape (K, Wy) or (N, K, Wy)
|
||||
|
||||
Returns:
|
||||
tuple:
|
||||
- locs (np.ndarray): locations of maximum heatmap responses in shape
|
||||
(K, 2) or (N, K, 2)
|
||||
- vals (np.ndarray): values of maximum heatmap responses in shape
|
||||
(K,) or (N, K)
|
||||
"""
|
||||
N, K, Wx = simcc_x.shape
|
||||
simcc_x = simcc_x.reshape(N * K, -1)
|
||||
simcc_y = simcc_y.reshape(N * K, -1)
|
||||
|
||||
# get maximum value locations
|
||||
x_locs = np.argmax(simcc_x, axis=1)
|
||||
y_locs = np.argmax(simcc_y, axis=1)
|
||||
locs = np.stack((x_locs, y_locs), axis=-1).astype(np.float32)
|
||||
max_val_x = np.amax(simcc_x, axis=1)
|
||||
max_val_y = np.amax(simcc_y, axis=1)
|
||||
|
||||
# get maximum value across x and y axis
|
||||
mask = max_val_x > max_val_y
|
||||
max_val_x[mask] = max_val_y[mask]
|
||||
vals = max_val_x
|
||||
locs[vals <= 0.] = -1
|
||||
|
||||
# reshape
|
||||
locs = locs.reshape(N, K, 2)
|
||||
vals = vals.reshape(N, K)
|
||||
|
||||
return locs, vals
|
||||
|
||||
|
||||
def decode(simcc_x: np.ndarray, simcc_y: np.ndarray,
|
||||
simcc_split_ratio) -> Tuple[np.ndarray, np.ndarray]:
|
||||
"""Modulate simcc distribution with Gaussian.
|
||||
|
||||
Args:
|
||||
simcc_x (np.ndarray[K, Wx]): model predicted simcc in x.
|
||||
simcc_y (np.ndarray[K, Wy]): model predicted simcc in y.
|
||||
simcc_split_ratio (int): The split ratio of simcc.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing center and scale.
|
||||
- np.ndarray[float32]: keypoints in shape (K, 2) or (n, K, 2)
|
||||
- np.ndarray[float32]: scores in shape (K,) or (n, K)
|
||||
"""
|
||||
keypoints, scores = get_simcc_maximum(simcc_x, simcc_y)
|
||||
keypoints /= simcc_split_ratio
|
||||
|
||||
return keypoints, scores
|
||||
|
||||
|
||||
def inference_pose(session, out_bbox, oriImg):
|
||||
h, w = session.get_inputs()[0].shape[2:]
|
||||
model_input_size = (w, h)
|
||||
resized_img, center, scale = preprocess(oriImg, out_bbox, model_input_size)
|
||||
outputs = inference(session, resized_img)
|
||||
keypoints, scores = postprocess(outputs, model_input_size, center, scale)
|
||||
|
||||
return keypoints, scores
|
297
vton-api/preprocess/dwpose/util.py
Normal file
297
vton-api/preprocess/dwpose/util.py
Normal file
@ -0,0 +1,297 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import matplotlib
|
||||
import cv2
|
||||
|
||||
|
||||
eps = 0.01
|
||||
|
||||
|
||||
def smart_resize(x, s):
|
||||
Ht, Wt = s
|
||||
if x.ndim == 2:
|
||||
Ho, Wo = x.shape
|
||||
Co = 1
|
||||
else:
|
||||
Ho, Wo, Co = x.shape
|
||||
if Co == 3 or Co == 1:
|
||||
k = float(Ht + Wt) / float(Ho + Wo)
|
||||
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
||||
else:
|
||||
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
|
||||
|
||||
|
||||
def smart_resize_k(x, fx, fy):
|
||||
if x.ndim == 2:
|
||||
Ho, Wo = x.shape
|
||||
Co = 1
|
||||
else:
|
||||
Ho, Wo, Co = x.shape
|
||||
Ht, Wt = Ho * fy, Wo * fx
|
||||
if Co == 3 or Co == 1:
|
||||
k = float(Ht + Wt) / float(Ho + Wo)
|
||||
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
|
||||
else:
|
||||
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
|
||||
|
||||
|
||||
def padRightDownCorner(img, stride, padValue):
|
||||
h = img.shape[0]
|
||||
w = img.shape[1]
|
||||
|
||||
pad = 4 * [None]
|
||||
pad[0] = 0 # up
|
||||
pad[1] = 0 # left
|
||||
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
||||
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
||||
|
||||
img_padded = img
|
||||
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
||||
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
||||
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
||||
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
||||
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
||||
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
||||
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
||||
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
||||
|
||||
return img_padded, pad
|
||||
|
||||
|
||||
def transfer(model, model_weights):
|
||||
transfered_model_weights = {}
|
||||
for weights_name in model.state_dict().keys():
|
||||
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
||||
return transfered_model_weights
|
||||
|
||||
|
||||
def draw_bodypose(canvas, candidate, subset):
|
||||
H, W, C = canvas.shape
|
||||
candidate = np.array(candidate)
|
||||
subset = np.array(subset)
|
||||
|
||||
stickwidth = 4
|
||||
|
||||
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
||||
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
||||
[1, 16], [16, 18], [3, 17], [6, 18]]
|
||||
|
||||
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
||||
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
||||
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
||||
|
||||
for i in range(17):
|
||||
for n in range(len(subset)):
|
||||
index = subset[n][np.array(limbSeq[i]) - 1]
|
||||
if -1 in index:
|
||||
continue
|
||||
Y = candidate[index.astype(int), 0] * float(W)
|
||||
X = candidate[index.astype(int), 1] * float(H)
|
||||
mX = np.mean(X)
|
||||
mY = np.mean(Y)
|
||||
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
||||
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
||||
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
||||
cv2.fillConvexPoly(canvas, polygon, colors[i])
|
||||
|
||||
canvas = (canvas * 0.6).astype(np.uint8)
|
||||
|
||||
for i in range(18):
|
||||
for n in range(len(subset)):
|
||||
index = int(subset[n][i])
|
||||
if index == -1:
|
||||
continue
|
||||
x, y = candidate[index][0:2]
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
||||
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_handpose(canvas, all_hand_peaks):
|
||||
H, W, C = canvas.shape
|
||||
|
||||
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
||||
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
||||
|
||||
for peaks in all_hand_peaks:
|
||||
peaks = np.array(peaks)
|
||||
|
||||
for ie, e in enumerate(edges):
|
||||
x1, y1 = peaks[e[0]]
|
||||
x2, y2 = peaks[e[1]]
|
||||
x1 = int(x1 * W)
|
||||
y1 = int(y1 * H)
|
||||
x2 = int(x2 * W)
|
||||
y2 = int(y2 * H)
|
||||
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
|
||||
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
|
||||
|
||||
for i, keyponit in enumerate(peaks):
|
||||
x, y = keyponit
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
||||
return canvas
|
||||
|
||||
|
||||
def draw_facepose(canvas, all_lmks):
|
||||
H, W, C = canvas.shape
|
||||
for lmks in all_lmks:
|
||||
lmks = np.array(lmks)
|
||||
for lmk in lmks:
|
||||
x, y = lmk
|
||||
x = int(x * W)
|
||||
y = int(y * H)
|
||||
if x > eps and y > eps:
|
||||
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
|
||||
return canvas
|
||||
|
||||
|
||||
# detect hand according to body pose keypoints
|
||||
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
||||
def handDetect(candidate, subset, oriImg):
|
||||
# right hand: wrist 4, elbow 3, shoulder 2
|
||||
# left hand: wrist 7, elbow 6, shoulder 5
|
||||
ratioWristElbow = 0.33
|
||||
detect_result = []
|
||||
image_height, image_width = oriImg.shape[0:2]
|
||||
for person in subset.astype(int):
|
||||
# if any of three not detected
|
||||
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
||||
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
||||
if not (has_left or has_right):
|
||||
continue
|
||||
hands = []
|
||||
#left hand
|
||||
if has_left:
|
||||
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
||||
x1, y1 = candidate[left_shoulder_index][:2]
|
||||
x2, y2 = candidate[left_elbow_index][:2]
|
||||
x3, y3 = candidate[left_wrist_index][:2]
|
||||
hands.append([x1, y1, x2, y2, x3, y3, True])
|
||||
# right hand
|
||||
if has_right:
|
||||
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
||||
x1, y1 = candidate[right_shoulder_index][:2]
|
||||
x2, y2 = candidate[right_elbow_index][:2]
|
||||
x3, y3 = candidate[right_wrist_index][:2]
|
||||
hands.append([x1, y1, x2, y2, x3, y3, False])
|
||||
|
||||
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
||||
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
||||
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
||||
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
||||
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
||||
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
||||
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
||||
x = x3 + ratioWristElbow * (x3 - x2)
|
||||
y = y3 + ratioWristElbow * (y3 - y2)
|
||||
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
||||
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
||||
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
||||
# x-y refers to the center --> offset to topLeft point
|
||||
# handRectangle.x -= handRectangle.width / 2.f;
|
||||
# handRectangle.y -= handRectangle.height / 2.f;
|
||||
x -= width / 2
|
||||
y -= width / 2 # width = height
|
||||
# overflow the image
|
||||
if x < 0: x = 0
|
||||
if y < 0: y = 0
|
||||
width1 = width
|
||||
width2 = width
|
||||
if x + width > image_width: width1 = image_width - x
|
||||
if y + width > image_height: width2 = image_height - y
|
||||
width = min(width1, width2)
|
||||
# the max hand box value is 20 pixels
|
||||
if width >= 20:
|
||||
detect_result.append([int(x), int(y), int(width), is_left])
|
||||
|
||||
'''
|
||||
return value: [[x, y, w, True if left hand else False]].
|
||||
width=height since the network require squared input.
|
||||
x, y is the coordinate of top left
|
||||
'''
|
||||
return detect_result
|
||||
|
||||
|
||||
# Written by Lvmin
|
||||
def faceDetect(candidate, subset, oriImg):
|
||||
# left right eye ear 14 15 16 17
|
||||
detect_result = []
|
||||
image_height, image_width = oriImg.shape[0:2]
|
||||
for person in subset.astype(int):
|
||||
has_head = person[0] > -1
|
||||
if not has_head:
|
||||
continue
|
||||
|
||||
has_left_eye = person[14] > -1
|
||||
has_right_eye = person[15] > -1
|
||||
has_left_ear = person[16] > -1
|
||||
has_right_ear = person[17] > -1
|
||||
|
||||
if not (has_left_eye or has_right_eye or has_left_ear or has_right_ear):
|
||||
continue
|
||||
|
||||
head, left_eye, right_eye, left_ear, right_ear = person[[0, 14, 15, 16, 17]]
|
||||
|
||||
width = 0.0
|
||||
x0, y0 = candidate[head][:2]
|
||||
|
||||
if has_left_eye:
|
||||
x1, y1 = candidate[left_eye][:2]
|
||||
d = max(abs(x0 - x1), abs(y0 - y1))
|
||||
width = max(width, d * 3.0)
|
||||
|
||||
if has_right_eye:
|
||||
x1, y1 = candidate[right_eye][:2]
|
||||
d = max(abs(x0 - x1), abs(y0 - y1))
|
||||
width = max(width, d * 3.0)
|
||||
|
||||
if has_left_ear:
|
||||
x1, y1 = candidate[left_ear][:2]
|
||||
d = max(abs(x0 - x1), abs(y0 - y1))
|
||||
width = max(width, d * 1.5)
|
||||
|
||||
if has_right_ear:
|
||||
x1, y1 = candidate[right_ear][:2]
|
||||
d = max(abs(x0 - x1), abs(y0 - y1))
|
||||
width = max(width, d * 1.5)
|
||||
|
||||
x, y = x0, y0
|
||||
|
||||
x -= width
|
||||
y -= width
|
||||
|
||||
if x < 0:
|
||||
x = 0
|
||||
|
||||
if y < 0:
|
||||
y = 0
|
||||
|
||||
width1 = width * 2
|
||||
width2 = width * 2
|
||||
|
||||
if x + width > image_width:
|
||||
width1 = image_width - x
|
||||
|
||||
if y + width > image_height:
|
||||
width2 = image_height - y
|
||||
|
||||
width = min(width1, width2)
|
||||
|
||||
if width >= 20:
|
||||
detect_result.append([int(x), int(y), int(width)])
|
||||
|
||||
return detect_result
|
||||
|
||||
|
||||
# get max index of 2d array
|
||||
def npmax(array):
|
||||
arrayindex = array.argmax(1)
|
||||
arrayvalue = array.max(1)
|
||||
i = arrayvalue.argmax()
|
||||
j = arrayindex[i]
|
||||
return i, j
|
46
vton-api/preprocess/dwpose/wholebody.py
Normal file
46
vton-api/preprocess/dwpose/wholebody.py
Normal file
@ -0,0 +1,46 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import onnxruntime as ort
|
||||
from .onnxdet import inference_detector
|
||||
from .onnxpose import inference_pose
|
||||
|
||||
class Wholebody:
|
||||
def __init__(self, model_root, device):
|
||||
providers = ['CPUExecutionProvider'
|
||||
] if device == 'cpu' else ['CUDAExecutionProvider']
|
||||
onnx_det = os.path.join(model_root, 'dwpose/yolox_l.onnx')
|
||||
onnx_pose = os.path.join(model_root, 'dwpose/dw-ll_ucoco_384.onnx')
|
||||
|
||||
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
||||
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
||||
|
||||
def __call__(self, oriImg):
|
||||
det_result = inference_detector(self.session_det, oriImg)
|
||||
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
||||
|
||||
keypoints_info = np.concatenate(
|
||||
(keypoints, scores[..., None]), axis=-1)
|
||||
# compute neck joint
|
||||
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
||||
# neck score when visualizing pred
|
||||
neck[:, 2:4] = np.logical_and(
|
||||
keypoints_info[:, 5, 2:4] > 0.3,
|
||||
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
||||
new_keypoints_info = np.insert(
|
||||
keypoints_info, 17, neck, axis=1)
|
||||
mmpose_idx = [
|
||||
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
|
||||
]
|
||||
openpose_idx = [
|
||||
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
|
||||
]
|
||||
new_keypoints_info[:, openpose_idx] = \
|
||||
new_keypoints_info[:, mmpose_idx]
|
||||
keypoints_info = new_keypoints_info
|
||||
|
||||
keypoints, scores = keypoints_info[
|
||||
..., :2], keypoints_info[..., 2]
|
||||
|
||||
return keypoints, scores
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
201
vton-api/preprocess/humanparsing/datasets/datasets.py
Normal file
201
vton-api/preprocess/humanparsing/datasets/datasets.py
Normal file
@ -0,0 +1,201 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
"""
|
||||
@Author : Peike Li
|
||||
@Contact : peike.li@yahoo.com
|
||||
@File : datasets.py
|
||||
@Time : 8/4/19 3:35 PM
|
||||
@Desc :
|
||||
@License : This source code is licensed under the license found in the
|
||||
LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import random
|
||||
import torch
|
||||
import cv2
|
||||
from torch.utils import data
|
||||
from utils.transforms import get_affine_transform
|
||||
|
||||
|
||||
class LIPDataSet(data.Dataset):
|
||||
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
|
||||
rotation_factor=30, ignore_label=255, transform=None):
|
||||
self.root = root
|
||||
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
||||
self.crop_size = np.asarray(crop_size)
|
||||
self.ignore_label = ignore_label
|
||||
self.scale_factor = scale_factor
|
||||
self.rotation_factor = rotation_factor
|
||||
self.flip_prob = 0.5
|
||||
self.transform = transform
|
||||
self.dataset = dataset
|
||||
|
||||
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
||||
train_list = [i_id.strip() for i_id in open(list_path)]
|
||||
|
||||
self.train_list = train_list
|
||||
self.number_samples = len(self.train_list)
|
||||
|
||||
def __len__(self):
|
||||
return self.number_samples
|
||||
|
||||
def _box2cs(self, box):
|
||||
x, y, w, h = box[:4]
|
||||
return self._xywh2cs(x, y, w, h)
|
||||
|
||||
def _xywh2cs(self, x, y, w, h):
|
||||
center = np.zeros((2), dtype=np.float32)
|
||||
center[0] = x + w * 0.5
|
||||
center[1] = y + h * 0.5
|
||||
if w > self.aspect_ratio * h:
|
||||
h = w * 1.0 / self.aspect_ratio
|
||||
elif w < self.aspect_ratio * h:
|
||||
w = h * self.aspect_ratio
|
||||
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
||||
return center, scale
|
||||
|
||||
def __getitem__(self, index):
|
||||
train_item = self.train_list[index]
|
||||
|
||||
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
|
||||
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
|
||||
|
||||
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
||||
h, w, _ = im.shape
|
||||
parsing_anno = np.zeros((h, w), dtype=np.long)
|
||||
|
||||
# Get person center and scale
|
||||
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
||||
r = 0
|
||||
|
||||
if self.dataset != 'test':
|
||||
# Get pose annotation
|
||||
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
|
||||
if self.dataset == 'train' or self.dataset == 'trainval':
|
||||
sf = self.scale_factor
|
||||
rf = self.rotation_factor
|
||||
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
|
||||
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
|
||||
|
||||
if random.random() <= self.flip_prob:
|
||||
im = im[:, ::-1, :]
|
||||
parsing_anno = parsing_anno[:, ::-1]
|
||||
person_center[0] = im.shape[1] - person_center[0] - 1
|
||||
right_idx = [15, 17, 19]
|
||||
left_idx = [14, 16, 18]
|
||||
for i in range(0, 3):
|
||||
right_pos = np.where(parsing_anno == right_idx[i])
|
||||
left_pos = np.where(parsing_anno == left_idx[i])
|
||||
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
|
||||
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
|
||||
|
||||
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
||||
input = cv2.warpAffine(
|
||||
im,
|
||||
trans,
|
||||
(int(self.crop_size[1]), int(self.crop_size[0])),
|
||||
flags=cv2.INTER_LINEAR,
|
||||
borderMode=cv2.BORDER_CONSTANT,
|
||||
borderValue=(0, 0, 0))
|
||||
|
||||
if self.transform:
|
||||
input = self.transform(input)
|
||||
|
||||
meta = {
|
||||
'name': train_item,
|
||||
'center': person_center,
|
||||
'height': h,
|
||||
'width': w,
|
||||
'scale': s,
|
||||
'rotation': r
|
||||
}
|
||||
|
||||
if self.dataset == 'val' or self.dataset == 'test':
|
||||
return input, meta
|
||||
else:
|
||||
label_parsing = cv2.warpAffine(
|
||||
parsing_anno,
|
||||
trans,
|
||||
(int(self.crop_size[1]), int(self.crop_size[0])),
|
||||
flags=cv2.INTER_NEAREST,
|
||||
borderMode=cv2.BORDER_CONSTANT,
|
||||
borderValue=(255))
|
||||
|
||||
label_parsing = torch.from_numpy(label_parsing)
|
||||
|
||||
return input, label_parsing, meta
|
||||
|
||||
|
||||
class LIPDataValSet(data.Dataset):
|
||||
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
|
||||
self.root = root
|
||||
self.crop_size = crop_size
|
||||
self.transform = transform
|
||||
self.flip = flip
|
||||
self.dataset = dataset
|
||||
self.root = root
|
||||
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
||||
self.crop_size = np.asarray(crop_size)
|
||||
|
||||
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
||||
val_list = [i_id.strip() for i_id in open(list_path)]
|
||||
|
||||
self.val_list = val_list
|
||||
self.number_samples = len(self.val_list)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.val_list)
|
||||
|
||||
def _box2cs(self, box):
|
||||
x, y, w, h = box[:4]
|
||||
return self._xywh2cs(x, y, w, h)
|
||||
|
||||
def _xywh2cs(self, x, y, w, h):
|
||||
center = np.zeros((2), dtype=np.float32)
|
||||
center[0] = x + w * 0.5
|
||||
center[1] = y + h * 0.5
|
||||
if w > self.aspect_ratio * h:
|
||||
h = w * 1.0 / self.aspect_ratio
|
||||
elif w < self.aspect_ratio * h:
|
||||
w = h * self.aspect_ratio
|
||||
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
||||
|
||||
return center, scale
|
||||
|
||||
def __getitem__(self, index):
|
||||
val_item = self.val_list[index]
|
||||
# Load training image
|
||||
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
|
||||
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
||||
h, w, _ = im.shape
|
||||
# Get person center and scale
|
||||
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
||||
r = 0
|
||||
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
||||
input = cv2.warpAffine(
|
||||
im,
|
||||
trans,
|
||||
(int(self.crop_size[1]), int(self.crop_size[0])),
|
||||
flags=cv2.INTER_LINEAR,
|
||||
borderMode=cv2.BORDER_CONSTANT,
|
||||
borderValue=(0, 0, 0))
|
||||
input = self.transform(input)
|
||||
flip_input = input.flip(dims=[-1])
|
||||
if self.flip:
|
||||
batch_input_im = torch.stack([input, flip_input])
|
||||
else:
|
||||
batch_input_im = input
|
||||
|
||||
meta = {
|
||||
'name': val_item,
|
||||
'center': person_center,
|
||||
'height': h,
|
||||
'width': w,
|
||||
'scale': s,
|
||||
'rotation': r
|
||||
}
|
||||
|
||||
return batch_input_im, meta
|
@ -0,0 +1,89 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
"""
|
||||
@Author : Peike Li
|
||||
@Contact : peike.li@yahoo.com
|
||||
@File : dataset.py
|
||||
@Time : 8/30/19 9:12 PM
|
||||
@Desc : Dataset Definition
|
||||
@License : This source code is licensed under the license found in the
|
||||
LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
|
||||
import os
|
||||
import pdb
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from torch.utils import data
|
||||
from utils.transforms import get_affine_transform
|
||||
|
||||
|
||||
class SimpleFolderDataset(data.Dataset):
|
||||
def __init__(self, root, input_size=[512, 512], transform=None):
|
||||
self.root = root
|
||||
self.input_size = input_size
|
||||
self.transform = transform
|
||||
self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
|
||||
self.input_size = np.asarray(input_size)
|
||||
self.is_pil_image = False
|
||||
if isinstance(root, Image.Image):
|
||||
self.file_list = [root]
|
||||
self.is_pil_image = True
|
||||
elif os.path.isfile(root):
|
||||
self.file_list = [os.path.basename(root)]
|
||||
self.root = os.path.dirname(root)
|
||||
else:
|
||||
self.file_list = os.listdir(self.root)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.file_list)
|
||||
|
||||
def _box2cs(self, box):
|
||||
x, y, w, h = box[:4]
|
||||
return self._xywh2cs(x, y, w, h)
|
||||
|
||||
def _xywh2cs(self, x, y, w, h):
|
||||
center = np.zeros((2), dtype=np.float32)
|
||||
center[0] = x + w * 0.5
|
||||
center[1] = y + h * 0.5
|
||||
if w > self.aspect_ratio * h:
|
||||
h = w * 1.0 / self.aspect_ratio
|
||||
elif w < self.aspect_ratio * h:
|
||||
w = h * self.aspect_ratio
|
||||
scale = np.array([w, h], dtype=np.float32)
|
||||
return center, scale
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.is_pil_image:
|
||||
img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
|
||||
else:
|
||||
img_name = self.file_list[index]
|
||||
img_path = os.path.join(self.root, img_name)
|
||||
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
||||
h, w, _ = img.shape
|
||||
|
||||
# Get person center and scale
|
||||
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
||||
r = 0
|
||||
trans = get_affine_transform(person_center, s, r, self.input_size)
|
||||
input = cv2.warpAffine(
|
||||
img,
|
||||
trans,
|
||||
(int(self.input_size[1]), int(self.input_size[0])),
|
||||
flags=cv2.INTER_LINEAR,
|
||||
borderMode=cv2.BORDER_CONSTANT,
|
||||
borderValue=(0, 0, 0))
|
||||
|
||||
input = self.transform(input)
|
||||
meta = {
|
||||
'center': person_center,
|
||||
'height': h,
|
||||
'width': w,
|
||||
'scale': s,
|
||||
'rotation': r
|
||||
}
|
||||
|
||||
return input, meta
|
@ -0,0 +1,40 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def generate_edge_tensor(label, edge_width=3):
|
||||
label = label.type(torch.cuda.FloatTensor)
|
||||
if len(label.shape) == 2:
|
||||
label = label.unsqueeze(0)
|
||||
n, h, w = label.shape
|
||||
edge = torch.zeros(label.shape, dtype=torch.float).cuda()
|
||||
# right
|
||||
edge_right = edge[:, 1:h, :]
|
||||
edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255)
|
||||
& (label[:, :h - 1, :] != 255)] = 1
|
||||
|
||||
# up
|
||||
edge_up = edge[:, :, :w - 1]
|
||||
edge_up[(label[:, :, :w - 1] != label[:, :, 1:w])
|
||||
& (label[:, :, :w - 1] != 255)
|
||||
& (label[:, :, 1:w] != 255)] = 1
|
||||
|
||||
# upright
|
||||
edge_upright = edge[:, :h - 1, :w - 1]
|
||||
edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w])
|
||||
& (label[:, :h - 1, :w - 1] != 255)
|
||||
& (label[:, 1:h, 1:w] != 255)] = 1
|
||||
|
||||
# bottomright
|
||||
edge_bottomright = edge[:, :h - 1, 1:w]
|
||||
edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1])
|
||||
& (label[:, :h - 1, 1:w] != 255)
|
||||
& (label[:, 1:h, :w - 1] != 255)] = 1
|
||||
|
||||
kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float).cuda()
|
||||
with torch.no_grad():
|
||||
edge = edge.unsqueeze(1)
|
||||
edge = F.conv2d(edge, kernel, stride=1, padding=1)
|
||||
edge[edge!=0] = 1
|
||||
edge = edge.squeeze()
|
||||
return edge
|
@ -0,0 +1,166 @@
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
import pycococreatortools
|
||||
|
||||
|
||||
def get_arguments():
|
||||
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
||||
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
||||
parser.add_argument("--json_save_dir", type=str, default='../data/msrcnn_finetune_annotations',
|
||||
help="path to save coco-style annotation json file")
|
||||
parser.add_argument("--use_val", type=bool, default=False,
|
||||
help="use train+val set for finetuning or not")
|
||||
parser.add_argument("--train_img_dir", type=str, default='../data/instance-level_human_parsing/Training/Images',
|
||||
help="train image path")
|
||||
parser.add_argument("--train_anno_dir", type=str,
|
||||
default='../data/instance-level_human_parsing/Training/Human_ids',
|
||||
help="train human mask path")
|
||||
parser.add_argument("--val_img_dir", type=str, default='../data/instance-level_human_parsing/Validation/Images',
|
||||
help="val image path")
|
||||
parser.add_argument("--val_anno_dir", type=str,
|
||||
default='../data/instance-level_human_parsing/Validation/Human_ids',
|
||||
help="val human mask path")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main(args):
|
||||
INFO = {
|
||||
"description": args.split_name + " Dataset",
|
||||
"url": "",
|
||||
"version": "",
|
||||
"year": 2019,
|
||||
"contributor": "xyq",
|
||||
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
||||
}
|
||||
|
||||
LICENSES = [
|
||||
{
|
||||
"id": 1,
|
||||
"name": "",
|
||||
"url": ""
|
||||
}
|
||||
]
|
||||
|
||||
CATEGORIES = [
|
||||
{
|
||||
'id': 1,
|
||||
'name': 'person',
|
||||
'supercategory': 'person',
|
||||
},
|
||||
]
|
||||
|
||||
coco_output = {
|
||||
"info": INFO,
|
||||
"licenses": LICENSES,
|
||||
"categories": CATEGORIES,
|
||||
"images": [],
|
||||
"annotations": []
|
||||
}
|
||||
|
||||
image_id = 1
|
||||
segmentation_id = 1
|
||||
|
||||
for image_name in os.listdir(args.train_img_dir):
|
||||
image = Image.open(os.path.join(args.train_img_dir, image_name))
|
||||
image_info = pycococreatortools.create_image_info(
|
||||
image_id, image_name, image.size
|
||||
)
|
||||
coco_output["images"].append(image_info)
|
||||
|
||||
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
||||
human_mask = np.asarray(Image.open(os.path.join(args.train_anno_dir, human_mask_name)))
|
||||
human_gt_labels = np.unique(human_mask)
|
||||
|
||||
for i in range(1, len(human_gt_labels)):
|
||||
category_info = {'id': 1, 'is_crowd': 0}
|
||||
binary_mask = np.uint8(human_mask == i)
|
||||
annotation_info = pycococreatortools.create_annotation_info(
|
||||
segmentation_id, image_id, category_info, binary_mask,
|
||||
image.size, tolerance=10
|
||||
)
|
||||
if annotation_info is not None:
|
||||
coco_output["annotations"].append(annotation_info)
|
||||
|
||||
segmentation_id += 1
|
||||
image_id += 1
|
||||
|
||||
if not os.path.exists(args.json_save_dir):
|
||||
os.makedirs(args.json_save_dir)
|
||||
if not args.use_val:
|
||||
with open('{}/{}_train.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
||||
json.dump(coco_output, output_json_file)
|
||||
else:
|
||||
for image_name in os.listdir(args.val_img_dir):
|
||||
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
||||
image_info = pycococreatortools.create_image_info(
|
||||
image_id, image_name, image.size
|
||||
)
|
||||
coco_output["images"].append(image_info)
|
||||
|
||||
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
||||
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
||||
human_gt_labels = np.unique(human_mask)
|
||||
|
||||
for i in range(1, len(human_gt_labels)):
|
||||
category_info = {'id': 1, 'is_crowd': 0}
|
||||
binary_mask = np.uint8(human_mask == i)
|
||||
annotation_info = pycococreatortools.create_annotation_info(
|
||||
segmentation_id, image_id, category_info, binary_mask,
|
||||
image.size, tolerance=10
|
||||
)
|
||||
if annotation_info is not None:
|
||||
coco_output["annotations"].append(annotation_info)
|
||||
|
||||
segmentation_id += 1
|
||||
image_id += 1
|
||||
|
||||
with open('{}/{}_trainval.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file:
|
||||
json.dump(coco_output, output_json_file)
|
||||
|
||||
coco_output_val = {
|
||||
"info": INFO,
|
||||
"licenses": LICENSES,
|
||||
"categories": CATEGORIES,
|
||||
"images": [],
|
||||
"annotations": []
|
||||
}
|
||||
|
||||
image_id_val = 1
|
||||
segmentation_id_val = 1
|
||||
|
||||
for image_name in os.listdir(args.val_img_dir):
|
||||
image = Image.open(os.path.join(args.val_img_dir, image_name))
|
||||
image_info = pycococreatortools.create_image_info(
|
||||
image_id_val, image_name, image.size
|
||||
)
|
||||
coco_output_val["images"].append(image_info)
|
||||
|
||||
human_mask_name = os.path.splitext(image_name)[0] + '.png'
|
||||
human_mask = np.asarray(Image.open(os.path.join(args.val_anno_dir, human_mask_name)))
|
||||
human_gt_labels = np.unique(human_mask)
|
||||
|
||||
for i in range(1, len(human_gt_labels)):
|
||||
category_info = {'id': 1, 'is_crowd': 0}
|
||||
binary_mask = np.uint8(human_mask == i)
|
||||
annotation_info = pycococreatortools.create_annotation_info(
|
||||
segmentation_id_val, image_id_val, category_info, binary_mask,
|
||||
image.size, tolerance=10
|
||||
)
|
||||
if annotation_info is not None:
|
||||
coco_output_val["annotations"].append(annotation_info)
|
||||
|
||||
segmentation_id_val += 1
|
||||
image_id_val += 1
|
||||
|
||||
with open('{}/{}_val.json'.format(args.json_save_dir, args.split_name), 'w') as output_json_file_val:
|
||||
json.dump(coco_output_val, output_json_file_val)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_arguments()
|
||||
main(args)
|
@ -0,0 +1,114 @@
|
||||
import re
|
||||
import datetime
|
||||
import numpy as np
|
||||
from itertools import groupby
|
||||
from skimage import measure
|
||||
from PIL import Image
|
||||
from pycocotools import mask
|
||||
|
||||
convert = lambda text: int(text) if text.isdigit() else text.lower()
|
||||
natrual_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
|
||||
|
||||
|
||||
def resize_binary_mask(array, new_size):
|
||||
image = Image.fromarray(array.astype(np.uint8) * 255)
|
||||
image = image.resize(new_size)
|
||||
return np.asarray(image).astype(np.bool_)
|
||||
|
||||
|
||||
def close_contour(contour):
|
||||
if not np.array_equal(contour[0], contour[-1]):
|
||||
contour = np.vstack((contour, contour[0]))
|
||||
return contour
|
||||
|
||||
|
||||
def binary_mask_to_rle(binary_mask):
|
||||
rle = {'counts': [], 'size': list(binary_mask.shape)}
|
||||
counts = rle.get('counts')
|
||||
for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
|
||||
if i == 0 and value == 1:
|
||||
counts.append(0)
|
||||
counts.append(len(list(elements)))
|
||||
|
||||
return rle
|
||||
|
||||
|
||||
def binary_mask_to_polygon(binary_mask, tolerance=0):
|
||||
"""Converts a binary mask to COCO polygon representation
|
||||
Args:
|
||||
binary_mask: a 2D binary numpy array where '1's represent the object
|
||||
tolerance: Maximum distance from original points of polygon to approximated
|
||||
polygonal chain. If tolerance is 0, the original coordinate array is returned.
|
||||
"""
|
||||
polygons = []
|
||||
# pad mask to close contours of shapes which start and end at an edge
|
||||
padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
|
||||
contours = measure.find_contours(padded_binary_mask, 0.5)
|
||||
contours = np.subtract(contours, 1)
|
||||
for contour in contours:
|
||||
contour = close_contour(contour)
|
||||
contour = measure.approximate_polygon(contour, tolerance)
|
||||
if len(contour) < 3:
|
||||
continue
|
||||
contour = np.flip(contour, axis=1)
|
||||
segmentation = contour.ravel().tolist()
|
||||
# after padding and subtracting 1 we may get -0.5 points in our segmentation
|
||||
segmentation = [0 if i < 0 else i for i in segmentation]
|
||||
polygons.append(segmentation)
|
||||
|
||||
return polygons
|
||||
|
||||
|
||||
def create_image_info(image_id, file_name, image_size,
|
||||
date_captured=datetime.datetime.utcnow().isoformat(' '),
|
||||
license_id=1, coco_url="", flickr_url=""):
|
||||
image_info = {
|
||||
"id": image_id,
|
||||
"file_name": file_name,
|
||||
"width": image_size[0],
|
||||
"height": image_size[1],
|
||||
"date_captured": date_captured,
|
||||
"license": license_id,
|
||||
"coco_url": coco_url,
|
||||
"flickr_url": flickr_url
|
||||
}
|
||||
|
||||
return image_info
|
||||
|
||||
|
||||
def create_annotation_info(annotation_id, image_id, category_info, binary_mask,
|
||||
image_size=None, tolerance=2, bounding_box=None):
|
||||
if image_size is not None:
|
||||
binary_mask = resize_binary_mask(binary_mask, image_size)
|
||||
|
||||
binary_mask_encoded = mask.encode(np.asfortranarray(binary_mask.astype(np.uint8)))
|
||||
|
||||
area = mask.area(binary_mask_encoded)
|
||||
if area < 1:
|
||||
return None
|
||||
|
||||
if bounding_box is None:
|
||||
bounding_box = mask.toBbox(binary_mask_encoded)
|
||||
|
||||
if category_info["is_crowd"]:
|
||||
is_crowd = 1
|
||||
segmentation = binary_mask_to_rle(binary_mask)
|
||||
else:
|
||||
is_crowd = 0
|
||||
segmentation = binary_mask_to_polygon(binary_mask, tolerance)
|
||||
if not segmentation:
|
||||
return None
|
||||
|
||||
annotation_info = {
|
||||
"id": annotation_id,
|
||||
"image_id": image_id,
|
||||
"category_id": category_info["id"],
|
||||
"iscrowd": is_crowd,
|
||||
"area": area.tolist(),
|
||||
"bbox": bounding_box.tolist(),
|
||||
"segmentation": segmentation,
|
||||
"width": binary_mask.shape[1],
|
||||
"height": binary_mask.shape[0],
|
||||
}
|
||||
|
||||
return annotation_info
|
@ -0,0 +1,74 @@
|
||||
import argparse
|
||||
import datetime
|
||||
import json
|
||||
import os
|
||||
from PIL import Image
|
||||
|
||||
import pycococreatortools
|
||||
|
||||
|
||||
def get_arguments():
|
||||
parser = argparse.ArgumentParser(description="transform mask annotation to coco annotation")
|
||||
parser.add_argument("--dataset", type=str, default='CIHP', help="name of dataset (CIHP, MHPv2 or VIP)")
|
||||
parser.add_argument("--json_save_dir", type=str, default='../data/CIHP/annotations',
|
||||
help="path to save coco-style annotation json file")
|
||||
parser.add_argument("--test_img_dir", type=str, default='../data/CIHP/Testing/Images',
|
||||
help="test image path")
|
||||
return parser.parse_args()
|
||||
|
||||
args = get_arguments()
|
||||
|
||||
INFO = {
|
||||
"description": args.dataset + "Dataset",
|
||||
"url": "",
|
||||
"version": "",
|
||||
"year": 2020,
|
||||
"contributor": "yunqiuxu",
|
||||
"date_created": datetime.datetime.utcnow().isoformat(' ')
|
||||
}
|
||||
|
||||
LICENSES = [
|
||||
{
|
||||
"id": 1,
|
||||
"name": "",
|
||||
"url": ""
|
||||
}
|
||||
]
|
||||
|
||||
CATEGORIES = [
|
||||
{
|
||||
'id': 1,
|
||||
'name': 'person',
|
||||
'supercategory': 'person',
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
def main(args):
|
||||
coco_output = {
|
||||
"info": INFO,
|
||||
"licenses": LICENSES,
|
||||
"categories": CATEGORIES,
|
||||
"images": [],
|
||||
"annotations": []
|
||||
}
|
||||
|
||||
image_id = 1
|
||||
|
||||
for image_name in os.listdir(args.test_img_dir):
|
||||
image = Image.open(os.path.join(args.test_img_dir, image_name))
|
||||
image_info = pycococreatortools.create_image_info(
|
||||
image_id, image_name, image.size
|
||||
)
|
||||
coco_output["images"].append(image_info)
|
||||
image_id += 1
|
||||
|
||||
if not os.path.exists(os.path.join(args.json_save_dir)):
|
||||
os.mkdir(os.path.join(args.json_save_dir))
|
||||
|
||||
with open('{}/{}.json'.format(args.json_save_dir, args.dataset), 'w') as output_json_file:
|
||||
json.dump(coco_output, output_json_file)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(args)
|
@ -0,0 +1,179 @@
|
||||
# Python CircleCI 2.0 configuration file
|
||||
#
|
||||
# Check https://circleci.com/docs/2.0/language-python/ for more details
|
||||
#
|
||||
version: 2
|
||||
|
||||
# -------------------------------------------------------------------------------------
|
||||
# Environments to run the jobs in
|
||||
# -------------------------------------------------------------------------------------
|
||||
cpu: &cpu
|
||||
docker:
|
||||
- image: circleci/python:3.6.8-stretch
|
||||
resource_class: medium
|
||||
|
||||
gpu: &gpu
|
||||
machine:
|
||||
image: ubuntu-1604:201903-01
|
||||
docker_layer_caching: true
|
||||
resource_class: gpu.small
|
||||
|
||||
# -------------------------------------------------------------------------------------
|
||||
# Re-usable commands
|
||||
# -------------------------------------------------------------------------------------
|
||||
install_python: &install_python
|
||||
- run:
|
||||
name: Install Python
|
||||
working_directory: ~/
|
||||
command: |
|
||||
pyenv install 3.6.1
|
||||
pyenv global 3.6.1
|
||||
|
||||
setup_venv: &setup_venv
|
||||
- run:
|
||||
name: Setup Virtual Env
|
||||
working_directory: ~/
|
||||
command: |
|
||||
python -m venv ~/venv
|
||||
echo ". ~/venv/bin/activate" >> $BASH_ENV
|
||||
. ~/venv/bin/activate
|
||||
python --version
|
||||
which python
|
||||
which pip
|
||||
pip install --upgrade pip
|
||||
|
||||
install_dep: &install_dep
|
||||
- run:
|
||||
name: Install Dependencies
|
||||
command: |
|
||||
pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
|
||||
pip install --progress-bar off cython opencv-python
|
||||
pip install --progress-bar off 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
|
||||
pip install --progress-bar off torch torchvision
|
||||
|
||||
install_detectron2: &install_detectron2
|
||||
- run:
|
||||
name: Install Detectron2
|
||||
command: |
|
||||
gcc --version
|
||||
pip install -U --progress-bar off -e .[dev]
|
||||
python -m detectron2.utils.collect_env
|
||||
|
||||
install_nvidia_driver: &install_nvidia_driver
|
||||
- run:
|
||||
name: Install nvidia driver
|
||||
working_directory: ~/
|
||||
command: |
|
||||
wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
|
||||
sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
|
||||
nvidia-smi
|
||||
|
||||
run_unittests: &run_unittests
|
||||
- run:
|
||||
name: Run Unit Tests
|
||||
command: |
|
||||
python -m unittest discover -v -s tests
|
||||
|
||||
# -------------------------------------------------------------------------------------
|
||||
# Jobs to run
|
||||
# -------------------------------------------------------------------------------------
|
||||
jobs:
|
||||
cpu_tests:
|
||||
<<: *cpu
|
||||
|
||||
working_directory: ~/detectron2
|
||||
|
||||
steps:
|
||||
- checkout
|
||||
- <<: *setup_venv
|
||||
|
||||
# Cache the venv directory that contains dependencies
|
||||
- restore_cache:
|
||||
keys:
|
||||
- cache-key-{{ .Branch }}-ID-20200425
|
||||
|
||||
- <<: *install_dep
|
||||
|
||||
- save_cache:
|
||||
paths:
|
||||
- ~/venv
|
||||
key: cache-key-{{ .Branch }}-ID-20200425
|
||||
|
||||
- <<: *install_detectron2
|
||||
|
||||
- run:
|
||||
name: isort
|
||||
command: |
|
||||
isort -c -sp .
|
||||
- run:
|
||||
name: black
|
||||
command: |
|
||||
black --check -l 100 .
|
||||
- run:
|
||||
name: flake8
|
||||
command: |
|
||||
flake8 .
|
||||
|
||||
- <<: *run_unittests
|
||||
|
||||
gpu_tests:
|
||||
<<: *gpu
|
||||
|
||||
working_directory: ~/detectron2
|
||||
|
||||
steps:
|
||||
- checkout
|
||||
- <<: *install_nvidia_driver
|
||||
|
||||
- run:
|
||||
name: Install nvidia-docker
|
||||
working_directory: ~/
|
||||
command: |
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
|
||||
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
|
||||
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
|
||||
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
|
||||
sudo apt-get update && sudo apt-get install -y nvidia-docker2
|
||||
# reload the docker daemon configuration
|
||||
sudo pkill -SIGHUP dockerd
|
||||
|
||||
- run:
|
||||
name: Launch docker
|
||||
working_directory: ~/detectron2/docker
|
||||
command: |
|
||||
nvidia-docker build -t detectron2:v0 -f Dockerfile-circleci .
|
||||
nvidia-docker run -itd --name d2 detectron2:v0
|
||||
docker exec -it d2 nvidia-smi
|
||||
|
||||
- run:
|
||||
name: Build Detectron2
|
||||
command: |
|
||||
docker exec -it d2 pip install 'git+https://github.com/facebookresearch/fvcore'
|
||||
docker cp ~/detectron2 d2:/detectron2
|
||||
# This will build d2 for the target GPU arch only
|
||||
docker exec -it d2 pip install -e /detectron2
|
||||
docker exec -it d2 python3 -m detectron2.utils.collect_env
|
||||
docker exec -it d2 python3 -c 'import torch; assert(torch.cuda.is_available())'
|
||||
|
||||
- run:
|
||||
name: Run Unit Tests
|
||||
command: |
|
||||
docker exec -e CIRCLECI=true -it d2 python3 -m unittest discover -v -s /detectron2/tests
|
||||
|
||||
workflows:
|
||||
version: 2
|
||||
regular_test:
|
||||
jobs:
|
||||
- cpu_tests
|
||||
- gpu_tests
|
||||
|
||||
#nightly_test:
|
||||
#jobs:
|
||||
#- gpu_tests
|
||||
#triggers:
|
||||
#- schedule:
|
||||
#cron: "0 0 * * *"
|
||||
#filters:
|
||||
#branches:
|
||||
#only:
|
||||
#- master
|
@ -0,0 +1,85 @@
|
||||
AccessModifierOffset: -1
|
||||
AlignAfterOpenBracket: AlwaysBreak
|
||||
AlignConsecutiveAssignments: false
|
||||
AlignConsecutiveDeclarations: false
|
||||
AlignEscapedNewlinesLeft: true
|
||||
AlignOperands: false
|
||||
AlignTrailingComments: false
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
AllowShortBlocksOnASingleLine: false
|
||||
AllowShortCaseLabelsOnASingleLine: false
|
||||
AllowShortFunctionsOnASingleLine: Empty
|
||||
AllowShortIfStatementsOnASingleLine: false
|
||||
AllowShortLoopsOnASingleLine: false
|
||||
AlwaysBreakAfterReturnType: None
|
||||
AlwaysBreakBeforeMultilineStrings: true
|
||||
AlwaysBreakTemplateDeclarations: true
|
||||
BinPackArguments: false
|
||||
BinPackParameters: false
|
||||
BraceWrapping:
|
||||
AfterClass: false
|
||||
AfterControlStatement: false
|
||||
AfterEnum: false
|
||||
AfterFunction: false
|
||||
AfterNamespace: false
|
||||
AfterObjCDeclaration: false
|
||||
AfterStruct: false
|
||||
AfterUnion: false
|
||||
BeforeCatch: false
|
||||
BeforeElse: false
|
||||
IndentBraces: false
|
||||
BreakBeforeBinaryOperators: None
|
||||
BreakBeforeBraces: Attach
|
||||
BreakBeforeTernaryOperators: true
|
||||
BreakConstructorInitializersBeforeComma: false
|
||||
BreakAfterJavaFieldAnnotations: false
|
||||
BreakStringLiterals: false
|
||||
ColumnLimit: 80
|
||||
CommentPragmas: '^ IWYU pragma:'
|
||||
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||
ConstructorInitializerIndentWidth: 4
|
||||
ContinuationIndentWidth: 4
|
||||
Cpp11BracedListStyle: true
|
||||
DerivePointerAlignment: false
|
||||
DisableFormat: false
|
||||
ForEachMacros: [ FOR_EACH, FOR_EACH_ENUMERATE, FOR_EACH_KV, FOR_EACH_R, FOR_EACH_RANGE, ]
|
||||
IncludeCategories:
|
||||
- Regex: '^<.*\.h(pp)?>'
|
||||
Priority: 1
|
||||
- Regex: '^<.*'
|
||||
Priority: 2
|
||||
- Regex: '.*'
|
||||
Priority: 3
|
||||
IndentCaseLabels: true
|
||||
IndentWidth: 2
|
||||
IndentWrappedFunctionNames: false
|
||||
KeepEmptyLinesAtTheStartOfBlocks: false
|
||||
MacroBlockBegin: ''
|
||||
MacroBlockEnd: ''
|
||||
MaxEmptyLinesToKeep: 1
|
||||
NamespaceIndentation: None
|
||||
ObjCBlockIndentWidth: 2
|
||||
ObjCSpaceAfterProperty: false
|
||||
ObjCSpaceBeforeProtocolList: false
|
||||
PenaltyBreakBeforeFirstCallParameter: 1
|
||||
PenaltyBreakComment: 300
|
||||
PenaltyBreakFirstLessLess: 120
|
||||
PenaltyBreakString: 1000
|
||||
PenaltyExcessCharacter: 1000000
|
||||
PenaltyReturnTypeOnItsOwnLine: 200
|
||||
PointerAlignment: Left
|
||||
ReflowComments: true
|
||||
SortIncludes: true
|
||||
SpaceAfterCStyleCast: false
|
||||
SpaceBeforeAssignmentOperators: true
|
||||
SpaceBeforeParens: ControlStatements
|
||||
SpaceInEmptyParentheses: false
|
||||
SpacesBeforeTrailingComments: 1
|
||||
SpacesInAngles: false
|
||||
SpacesInContainerLiterals: true
|
||||
SpacesInCStyleCastParentheses: false
|
||||
SpacesInParentheses: false
|
||||
SpacesInSquareBrackets: false
|
||||
Standard: Cpp11
|
||||
TabWidth: 8
|
||||
UseTab: Never
|
@ -0,0 +1,9 @@
|
||||
# This is an example .flake8 config, used when developing *Black* itself.
|
||||
# Keep in sync with setup.cfg which is used for source packages.
|
||||
|
||||
[flake8]
|
||||
ignore = W503, E203, E221, C901, C408, E741
|
||||
max-line-length = 100
|
||||
max-complexity = 18
|
||||
select = B,C,E,F,W,T4,B9
|
||||
exclude = build,__init__.py
|
5
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
vendored
Normal file
5
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/CODE_OF_CONDUCT.md
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
# Code of Conduct
|
||||
|
||||
Facebook has adopted a Code of Conduct that we expect project participants to adhere to.
|
||||
Please read the [full text](https://code.fb.com/codeofconduct/)
|
||||
so that you can understand what actions will and will not be tolerated.
|
49
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
vendored
Normal file
49
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/CONTRIBUTING.md
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
# Contributing to detectron2
|
||||
|
||||
## Issues
|
||||
We use GitHub issues to track public bugs and questions.
|
||||
Please make sure to follow one of the
|
||||
[issue templates](https://github.com/facebookresearch/detectron2/issues/new/choose)
|
||||
when reporting any issues.
|
||||
|
||||
Facebook has a [bounty program](https://www.facebook.com/whitehat/) for the safe
|
||||
disclosure of security bugs. In those cases, please go through the process
|
||||
outlined on that page and do not file a public issue.
|
||||
|
||||
## Pull Requests
|
||||
We actively welcome your pull requests.
|
||||
|
||||
However, if you're adding any significant features (e.g. > 50 lines), please
|
||||
make sure to have a corresponding issue to discuss your motivation and proposals,
|
||||
before sending a PR. We do not always accept new features, and we take the following
|
||||
factors into consideration:
|
||||
|
||||
1. Whether the same feature can be achieved without modifying detectron2.
|
||||
Detectron2 is designed so that you can implement many extensions from the outside, e.g.
|
||||
those in [projects](https://github.com/facebookresearch/detectron2/tree/master/projects).
|
||||
If some part is not as extensible, you can also bring up the issue to make it more extensible.
|
||||
2. Whether the feature is potentially useful to a large audience, or only to a small portion of users.
|
||||
3. Whether the proposed solution has a good design / interface.
|
||||
4. Whether the proposed solution adds extra mental/practical overhead to users who don't
|
||||
need such feature.
|
||||
5. Whether the proposed solution breaks existing APIs.
|
||||
|
||||
When sending a PR, please do:
|
||||
|
||||
1. If a PR contains multiple orthogonal changes, split it to several PRs.
|
||||
2. If you've added code that should be tested, add tests.
|
||||
3. For PRs that need experiments (e.g. adding a new model or new methods),
|
||||
you don't need to update model zoo, but do provide experiment results in the description of the PR.
|
||||
4. If APIs are changed, update the documentation.
|
||||
5. Make sure your code lints with `./dev/linter.sh`.
|
||||
|
||||
|
||||
## Contributor License Agreement ("CLA")
|
||||
In order to accept your pull request, we need you to submit a CLA. You only need
|
||||
to do this once to work on any of Facebook's open source projects.
|
||||
|
||||
Complete your CLA here: <https://code.facebook.com/cla>
|
||||
|
||||
## License
|
||||
By contributing to detectron2, you agree that your contributions will be licensed
|
||||
under the LICENSE file in the root directory of this source tree.
|
1
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
vendored
Normal file
1
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/Detectron2-Logo-Horz.svg
vendored
Normal file
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 6.3 KiB |
5
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
vendored
Normal file
5
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
|
||||
Please select an issue template from
|
||||
https://github.com/facebookresearch/detectron2/issues/new/choose .
|
||||
|
||||
Otherwise your issue will be closed.
|
36
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
vendored
Normal file
36
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/bugs.md
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
---
|
||||
name: "🐛 Bugs"
|
||||
about: Report bugs in detectron2
|
||||
title: Please read & provide the following
|
||||
|
||||
---
|
||||
|
||||
## Instructions To Reproduce the 🐛 Bug:
|
||||
|
||||
1. what changes you made (`git diff`) or what code you wrote
|
||||
```
|
||||
<put diff or code here>
|
||||
```
|
||||
2. what exact command you run:
|
||||
3. what you observed (including __full logs__):
|
||||
```
|
||||
<put logs here>
|
||||
```
|
||||
4. please simplify the steps as much as possible so they do not require additional resources to
|
||||
run, such as a private dataset.
|
||||
|
||||
## Expected behavior:
|
||||
|
||||
If there are no obvious error in "what you observed" provided above,
|
||||
please tell us the expected behavior.
|
||||
|
||||
## Environment:
|
||||
|
||||
Provide your environment information using the following command:
|
||||
```
|
||||
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
||||
```
|
||||
|
||||
If your issue looks like an installation issue / environment issue,
|
||||
please first try to solve it yourself with the instructions in
|
||||
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
9
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
9
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/ISSUE_TEMPLATE/config.yml
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
# require an issue template to be chosen
|
||||
blank_issues_enabled: false
|
||||
|
||||
# Unexpected behaviors & bugs are split to two templates.
|
||||
# When they are one template, users think "it's not a bug" and don't choose the template.
|
||||
#
|
||||
# But the file name is still "unexpected-problems-bugs.md" so that old references
|
||||
# to this issue template still works.
|
||||
# It's ok since this template should be a superset of "bugs.md" (unexpected behaviors is a superset of bugs)
|
@ -0,0 +1,31 @@
|
||||
---
|
||||
name: "\U0001F680Feature Request"
|
||||
about: Submit a proposal/request for a new detectron2 feature
|
||||
|
||||
---
|
||||
|
||||
## 🚀 Feature
|
||||
A clear and concise description of the feature proposal.
|
||||
|
||||
|
||||
## Motivation & Examples
|
||||
|
||||
Tell us why the feature is useful.
|
||||
|
||||
Describe what the feature would look like, if it is implemented.
|
||||
Best demonstrated using **code examples** in addition to words.
|
||||
|
||||
## Note
|
||||
|
||||
We only consider adding new features if they are relevant to many users.
|
||||
|
||||
If you request implementation of research papers --
|
||||
we only consider papers that have enough significance and prevalance in the object detection field.
|
||||
|
||||
We do not take requests for most projects in the `projects/` directory,
|
||||
because they are research code release that is mainly for other researchers to reproduce results.
|
||||
|
||||
Instead of adding features inside detectron2,
|
||||
you can implement many features by [extending detectron2](https://detectron2.readthedocs.io/tutorials/extend.html).
|
||||
The [projects/](https://github.com/facebookresearch/detectron2/tree/master/projects/) directory contains many of such examples.
|
||||
|
@ -0,0 +1,26 @@
|
||||
---
|
||||
name: "❓How to do something?"
|
||||
about: How to do something using detectron2? What does an API do?
|
||||
|
||||
---
|
||||
|
||||
## ❓ How to do something using detectron2
|
||||
|
||||
Describe what you want to do, including:
|
||||
1. what inputs you will provide, if any:
|
||||
2. what outputs you are expecting:
|
||||
|
||||
## ❓ What does an API do and how to use it?
|
||||
Please link to which API or documentation you're asking about from
|
||||
https://detectron2.readthedocs.io/
|
||||
|
||||
|
||||
NOTE:
|
||||
|
||||
1. Only general answers are provided.
|
||||
If you want to ask about "why X did not work", please use the
|
||||
[Unexpected behaviors](https://github.com/facebookresearch/detectron2/issues/new/choose) issue template.
|
||||
|
||||
2. About how to implement new models / new dataloader / new training logic, etc., check documentation first.
|
||||
|
||||
3. We do not answer general machine learning / computer vision questions that are not specific to detectron2, such as how a model works, how to improve your training/make it converge, or what algorithm/methods can be used to achieve X.
|
@ -0,0 +1,45 @@
|
||||
---
|
||||
name: "Unexpected behaviors"
|
||||
about: Run into unexpected behaviors when using detectron2
|
||||
title: Please read & provide the following
|
||||
|
||||
---
|
||||
|
||||
If you do not know the root cause of the problem, and wish someone to help you, please
|
||||
post according to this template:
|
||||
|
||||
## Instructions To Reproduce the Issue:
|
||||
|
||||
1. what changes you made (`git diff`) or what code you wrote
|
||||
```
|
||||
<put diff or code here>
|
||||
```
|
||||
2. what exact command you run:
|
||||
3. what you observed (including __full logs__):
|
||||
```
|
||||
<put logs here>
|
||||
```
|
||||
4. please simplify the steps as much as possible so they do not require additional resources to
|
||||
run, such as a private dataset.
|
||||
|
||||
## Expected behavior:
|
||||
|
||||
If there are no obvious error in "what you observed" provided above,
|
||||
please tell us the expected behavior.
|
||||
|
||||
If you expect the model to converge / work better, note that we do not give suggestions
|
||||
on how to train a new model.
|
||||
Only in one of the two conditions we will help with it:
|
||||
(1) You're unable to reproduce the results in detectron2 model zoo.
|
||||
(2) It indicates a detectron2 bug.
|
||||
|
||||
## Environment:
|
||||
|
||||
Provide your environment information using the following command:
|
||||
```
|
||||
wget -nc -q https://github.com/facebookresearch/detectron2/raw/master/detectron2/utils/collect_env.py && python collect_env.py
|
||||
```
|
||||
|
||||
If your issue looks like an installation issue / environment issue,
|
||||
please first try to solve it yourself with the instructions in
|
||||
https://detectron2.readthedocs.io/tutorials/install.html#common-installation-issues
|
9
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
vendored
Normal file
9
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.github/pull_request_template.md
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
Thanks for your contribution!
|
||||
|
||||
If you're sending a large PR (e.g., >50 lines),
|
||||
please open an issue first about the feature / bug, and indicate how you want to contribute.
|
||||
|
||||
Before submitting a PR, please run `dev/linter.sh` to lint the code.
|
||||
|
||||
See https://detectron2.readthedocs.io/notes/contributing.html#pull-requests
|
||||
about how we handle PRs.
|
46
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.gitignore
vendored
Normal file
46
vton-api/preprocess/humanparsing/mhp_extension/detectron2/.gitignore
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
# output dir
|
||||
output
|
||||
instant_test_output
|
||||
inference_test_output
|
||||
|
||||
|
||||
*.jpg
|
||||
*.png
|
||||
*.txt
|
||||
*.json
|
||||
*.diff
|
||||
|
||||
# compilation and distribution
|
||||
__pycache__
|
||||
_ext
|
||||
*.pyc
|
||||
*.so
|
||||
detectron2.egg-info/
|
||||
build/
|
||||
dist/
|
||||
wheels/
|
||||
|
||||
# pytorch/python/numpy formats
|
||||
*.pth
|
||||
*.pkl
|
||||
*.npy
|
||||
|
||||
# ipython/jupyter notebooks
|
||||
*.ipynb
|
||||
**/.ipynb_checkpoints/
|
||||
|
||||
# Editor temporaries
|
||||
*.swn
|
||||
*.swo
|
||||
*.swp
|
||||
*~
|
||||
|
||||
# editor settings
|
||||
.idea
|
||||
.vscode
|
||||
|
||||
# project dirs
|
||||
/detectron2/model_zoo/configs
|
||||
/datasets
|
||||
/projects/*/datasets
|
||||
/models
|
@ -0,0 +1,79 @@
|
||||
## Getting Started with Detectron2
|
||||
|
||||
This document provides a brief intro of the usage of builtin command-line tools in detectron2.
|
||||
|
||||
For a tutorial that involves actual coding with the API,
|
||||
see our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
which covers how to run inference with an
|
||||
existing model, and how to train a builtin model on a custom dataset.
|
||||
|
||||
For more advanced tutorials, refer to our [documentation](https://detectron2.readthedocs.io/tutorials/extend.html).
|
||||
|
||||
|
||||
### Inference Demo with Pre-trained Models
|
||||
|
||||
1. Pick a model and its config file from
|
||||
[model zoo](MODEL_ZOO.md),
|
||||
for example, `mask_rcnn_R_50_FPN_3x.yaml`.
|
||||
2. We provide `demo.py` that is able to run builtin standard models. Run it with:
|
||||
```
|
||||
cd demo/
|
||||
python demo.py --config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
|
||||
--input input1.jpg input2.jpg \
|
||||
[--other-options]
|
||||
--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl
|
||||
```
|
||||
The configs are made for training, therefore we need to specify `MODEL.WEIGHTS` to a model from model zoo for evaluation.
|
||||
This command will run the inference and show visualizations in an OpenCV window.
|
||||
|
||||
For details of the command line arguments, see `demo.py -h` or look at its source code
|
||||
to understand its behavior. Some common arguments are:
|
||||
* To run __on your webcam__, replace `--input files` with `--webcam`.
|
||||
* To run __on a video__, replace `--input files` with `--video-input video.mp4`.
|
||||
* To run __on cpu__, add `MODEL.DEVICE cpu` after `--opts`.
|
||||
* To save outputs to a directory (for images) or a file (for webcam or video), use `--output`.
|
||||
|
||||
|
||||
### Training & Evaluation in Command Line
|
||||
|
||||
We provide a script in "tools/{,plain_}train_net.py", that is made to train
|
||||
all the configs provided in detectron2.
|
||||
You may want to use it as a reference to write your own training script.
|
||||
|
||||
To train a model with "train_net.py", first
|
||||
setup the corresponding datasets following
|
||||
[datasets/README.md](./datasets/README.md),
|
||||
then run:
|
||||
```
|
||||
cd tools/
|
||||
./train_net.py --num-gpus 8 \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml
|
||||
```
|
||||
|
||||
The configs are made for 8-GPU training.
|
||||
To train on 1 GPU, you may need to [change some parameters](https://arxiv.org/abs/1706.02677), e.g.:
|
||||
```
|
||||
./train_net.py \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
||||
--num-gpus 1 SOLVER.IMS_PER_BATCH 2 SOLVER.BASE_LR 0.0025
|
||||
```
|
||||
|
||||
For most models, CPU training is not supported.
|
||||
|
||||
To evaluate a model's performance, use
|
||||
```
|
||||
./train_net.py \
|
||||
--config-file ../configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml \
|
||||
--eval-only MODEL.WEIGHTS /path/to/checkpoint_file
|
||||
```
|
||||
For more options, see `./train_net.py -h`.
|
||||
|
||||
### Use Detectron2 APIs in Your Code
|
||||
|
||||
See our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
to learn how to use detectron2 APIs to:
|
||||
1. run inference with an existing model
|
||||
2. train a builtin model on a custom dataset
|
||||
|
||||
See [detectron2/projects](https://github.com/facebookresearch/detectron2/tree/master/projects)
|
||||
for more ways to build your project on detectron2.
|
@ -0,0 +1,184 @@
|
||||
## Installation
|
||||
|
||||
Our [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5)
|
||||
has step-by-step instructions that install detectron2.
|
||||
The [Dockerfile](docker)
|
||||
also installs detectron2 with a few simple commands.
|
||||
|
||||
### Requirements
|
||||
- Linux or macOS with Python ≥ 3.6
|
||||
- PyTorch ≥ 1.4
|
||||
- [torchvision](https://github.com/pytorch/vision/) that matches the PyTorch installation.
|
||||
You can install them together at [pytorch.org](https://pytorch.org) to make sure of this.
|
||||
- OpenCV, optional, needed by demo and visualization
|
||||
- pycocotools: `pip install cython; pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'`
|
||||
|
||||
|
||||
### Build Detectron2 from Source
|
||||
|
||||
gcc & g++ ≥ 5 are required. [ninja](https://ninja-build.org/) is recommended for faster build.
|
||||
After having them, run:
|
||||
```
|
||||
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'
|
||||
# (add --user if you don't have permission)
|
||||
|
||||
# Or, to install it from a local clone:
|
||||
git clone https://github.com/facebookresearch/detectron2.git
|
||||
python -m pip install -e detectron2
|
||||
|
||||
# Or if you are on macOS
|
||||
# CC=clang CXX=clang++ python -m pip install -e .
|
||||
```
|
||||
|
||||
To __rebuild__ detectron2 that's built from a local clone, use `rm -rf build/ **/*.so` to clean the
|
||||
old build first. You often need to rebuild detectron2 after reinstalling PyTorch.
|
||||
|
||||
### Install Pre-Built Detectron2 (Linux only)
|
||||
```
|
||||
# for CUDA 10.1:
|
||||
python -m pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/index.html
|
||||
```
|
||||
You can replace cu101 with "cu{100,92}" or "cpu".
|
||||
|
||||
Note that:
|
||||
1. Such installation has to be used with certain version of official PyTorch release.
|
||||
See [releases](https://github.com/facebookresearch/detectron2/releases) for requirements.
|
||||
It will not work with a different version of PyTorch or a non-official build of PyTorch.
|
||||
2. Such installation is out-of-date w.r.t. master branch of detectron2. It may not be
|
||||
compatible with the master branch of a research project that uses detectron2 (e.g. those in
|
||||
[projects](projects) or [meshrcnn](https://github.com/facebookresearch/meshrcnn/)).
|
||||
|
||||
### Common Installation Issues
|
||||
|
||||
If you met issues using the pre-built detectron2, please uninstall it and try building it from source.
|
||||
|
||||
Click each issue for its solutions:
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined torch/aten/caffe2 symbols, or segmentation fault immediately when running the library.
|
||||
</summary>
|
||||
<br/>
|
||||
|
||||
This usually happens when detectron2 or torchvision is not
|
||||
compiled with the version of PyTorch you're running.
|
||||
|
||||
Pre-built torchvision or detectron2 has to work with the corresponding official release of pytorch.
|
||||
If the error comes from a pre-built torchvision, uninstall torchvision and pytorch and reinstall them
|
||||
following [pytorch.org](http://pytorch.org). So the versions will match.
|
||||
|
||||
If the error comes from a pre-built detectron2, check [release notes](https://github.com/facebookresearch/detectron2/releases)
|
||||
to see the corresponding pytorch version required for each pre-built detectron2.
|
||||
|
||||
If the error comes from detectron2 or torchvision that you built manually from source,
|
||||
remove files you built (`build/`, `**/*.so`) and rebuild it so it can pick up the version of pytorch currently in your environment.
|
||||
|
||||
If you cannot resolve this problem, please include the output of `gdb -ex "r" -ex "bt" -ex "quit" --args python -m detectron2.utils.collect_env`
|
||||
in your issue.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined C++ symbols (e.g. `GLIBCXX`) or C++ symbols not found.
|
||||
</summary>
|
||||
<br/>
|
||||
Usually it's because the library is compiled with a newer C++ compiler but run with an old C++ runtime.
|
||||
|
||||
This often happens with old anaconda.
|
||||
Try `conda update libgcc`. Then rebuild detectron2.
|
||||
|
||||
The fundamental solution is to run the code with proper C++ runtime.
|
||||
One way is to use `LD_PRELOAD=/path/to/libstdc++.so`.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"Not compiled with GPU support" or "Detectron2 CUDA Compiler: not available".
|
||||
</summary>
|
||||
<br/>
|
||||
CUDA is not found when building detectron2.
|
||||
You should make sure
|
||||
|
||||
```
|
||||
python -c 'import torch; from torch.utils.cpp_extension import CUDA_HOME; print(torch.cuda.is_available(), CUDA_HOME)'
|
||||
```
|
||||
|
||||
print valid outputs at the time you build detectron2.
|
||||
|
||||
Most models can run inference (but not training) without GPU support. To use CPUs, set `MODEL.DEVICE='cpu'` in the config.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"invalid device function" or "no kernel image is available for execution".
|
||||
</summary>
|
||||
<br/>
|
||||
Two possibilities:
|
||||
|
||||
* You build detectron2 with one version of CUDA but run it with a different version.
|
||||
|
||||
To check whether it is the case,
|
||||
use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
||||
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
||||
to contain cuda libraries of the same version.
|
||||
|
||||
When they are inconsistent,
|
||||
you need to either install a different build of PyTorch (or build by yourself)
|
||||
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
||||
|
||||
* Detectron2 or PyTorch/torchvision is not built for the correct GPU architecture (compute compatibility).
|
||||
|
||||
The GPU architecture for PyTorch/detectron2/torchvision is available in the "architecture flags" in
|
||||
`python -m detectron2.utils.collect_env`.
|
||||
|
||||
The GPU architecture flags of detectron2/torchvision by default matches the GPU model detected
|
||||
during compilation. This means the compiled code may not work on a different GPU model.
|
||||
To overwrite the GPU architecture for detectron2/torchvision, use `TORCH_CUDA_ARCH_LIST` environment variable during compilation.
|
||||
|
||||
For example, `export TORCH_CUDA_ARCH_LIST=6.0,7.0` makes it compile for both P100s and V100s.
|
||||
Visit [developer.nvidia.com/cuda-gpus](https://developer.nvidia.com/cuda-gpus) to find out
|
||||
the correct compute compatibility number for your device.
|
||||
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
Undefined CUDA symbols; cannot open libcudart.so; other nvcc failures.
|
||||
</summary>
|
||||
<br/>
|
||||
The version of NVCC you use to build detectron2 or torchvision does
|
||||
not match the version of CUDA you are running with.
|
||||
This often happens when using anaconda's CUDA runtime.
|
||||
|
||||
Use `python -m detectron2.utils.collect_env` to find out inconsistent CUDA versions.
|
||||
In the output of this command, you should expect "Detectron2 CUDA Compiler", "CUDA_HOME", "PyTorch built with - CUDA"
|
||||
to contain cuda libraries of the same version.
|
||||
|
||||
When they are inconsistent,
|
||||
you need to either install a different build of PyTorch (or build by yourself)
|
||||
to match your local CUDA installation, or install a different version of CUDA to match PyTorch.
|
||||
</details>
|
||||
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
"ImportError: cannot import name '_C'".
|
||||
</summary>
|
||||
<br/>
|
||||
Please build and install detectron2 following the instructions above.
|
||||
|
||||
If you are running code from detectron2's root directory, `cd` to a different one.
|
||||
Otherwise you may not import the code that you installed.
|
||||
</details>
|
||||
|
||||
<details>
|
||||
<summary>
|
||||
ONNX conversion segfault after some "TraceWarning".
|
||||
</summary>
|
||||
<br/>
|
||||
The ONNX package is compiled with too old compiler.
|
||||
|
||||
Please build and install ONNX from its source code using a compiler
|
||||
whose version is closer to what's used by PyTorch (available in `torch.__config__.show()`).
|
||||
</details>
|
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2019 - present, Facebook, Inc
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
@ -0,0 +1,903 @@
|
||||
# Detectron2 Model Zoo and Baselines
|
||||
|
||||
## Introduction
|
||||
|
||||
This file documents a large collection of baselines trained
|
||||
with detectron2 in Sep-Oct, 2019.
|
||||
All numbers were obtained on [Big Basin](https://engineering.fb.com/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/)
|
||||
servers with 8 NVIDIA V100 GPUs & NVLink. The software in use were PyTorch 1.3, CUDA 9.2, cuDNN 7.4.2 or 7.6.3.
|
||||
You can access these models from code using [detectron2.model_zoo](https://detectron2.readthedocs.io/modules/model_zoo.html) APIs.
|
||||
|
||||
In addition to these official baseline models, you can find more models in [projects/](projects/).
|
||||
|
||||
#### How to Read the Tables
|
||||
* The "Name" column contains a link to the config file. Running `tools/train_net.py` with this config file
|
||||
and 8 GPUs will reproduce the model.
|
||||
* Training speed is averaged across the entire training.
|
||||
We keep updating the speed with latest version of detectron2/pytorch/etc.,
|
||||
so they might be different from the `metrics` file.
|
||||
Training speed for multi-machine jobs is not provided.
|
||||
* Inference speed is measured by `tools/train_net.py --eval-only`, or [inference_on_dataset()](https://detectron2.readthedocs.io/modules/evaluation.html#detectron2.evaluation.inference_on_dataset),
|
||||
with batch size 1 in detectron2 directly.
|
||||
Measuring it with your own code will likely introduce other overhead.
|
||||
Actual deployment in production should in general be faster than the given inference
|
||||
speed due to more optimizations.
|
||||
* The *model id* column is provided for ease of reference.
|
||||
To check downloaded file integrity, any model on this page contains its md5 prefix in its file name.
|
||||
* Training curves and other statistics can be found in `metrics` for each model.
|
||||
|
||||
#### Common Settings for COCO Models
|
||||
* All COCO models were trained on `train2017` and evaluated on `val2017`.
|
||||
* The default settings are __not directly comparable__ with Detectron's standard settings.
|
||||
For example, our default training data augmentation uses scale jittering in addition to horizontal flipping.
|
||||
|
||||
To make fair comparisons with Detectron's settings, see
|
||||
[Detectron1-Comparisons](configs/Detectron1-Comparisons/) for accuracy comparison,
|
||||
and [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html)
|
||||
for speed comparison.
|
||||
* For Faster/Mask R-CNN, we provide baselines based on __3 different backbone combinations__:
|
||||
* __FPN__: Use a ResNet+FPN backbone with standard conv and FC heads for mask and box prediction,
|
||||
respectively. It obtains the best
|
||||
speed/accuracy tradeoff, but the other two are still useful for research.
|
||||
* __C4__: Use a ResNet conv4 backbone with conv5 head. The original baseline in the Faster R-CNN paper.
|
||||
* __DC5__ (Dilated-C5): Use a ResNet conv5 backbone with dilations in conv5, and standard conv and FC heads
|
||||
for mask and box prediction, respectively.
|
||||
This is used by the Deformable ConvNet paper.
|
||||
* Most models are trained with the 3x schedule (~37 COCO epochs).
|
||||
Although 1x models are heavily under-trained, we provide some ResNet-50 models with the 1x (~12 COCO epochs)
|
||||
training schedule for comparison when doing quick research iteration.
|
||||
|
||||
#### ImageNet Pretrained Models
|
||||
|
||||
We provide backbone models pretrained on ImageNet-1k dataset.
|
||||
These models have __different__ format from those provided in Detectron: we do not fuse BatchNorm into an affine layer.
|
||||
* [R-50.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-50.pkl): converted copy of [MSRA's original ResNet-50](https://github.com/KaimingHe/deep-residual-networks) model.
|
||||
* [R-101.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/MSRA/R-101.pkl): converted copy of [MSRA's original ResNet-101](https://github.com/KaimingHe/deep-residual-networks) model.
|
||||
* [X-101-32x8d.pkl](https://dl.fbaipublicfiles.com/detectron2/ImageNetPretrained/FAIR/X-101-32x8d.pkl): ResNeXt-101-32x8d model trained with Caffe2 at FB.
|
||||
|
||||
Pretrained models in Detectron's format can still be used. For example:
|
||||
* [X-152-32x8d-IN5k.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/25093814/X-152-32x8d-IN5k.pkl):
|
||||
ResNeXt-152-32x8d model trained on ImageNet-5k with Caffe2 at FB (see ResNeXt paper for details on ImageNet-5k).
|
||||
* [R-50-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47261647/R-50-GN.pkl):
|
||||
ResNet-50 with Group Normalization.
|
||||
* [R-101-GN.pkl](https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/47592356/R-101-GN.pkl):
|
||||
ResNet-101 with Group Normalization.
|
||||
|
||||
Torchvision's ResNet models can be used after converted by [this script](tools/convert-torchvision-to-d2.py).
|
||||
|
||||
#### License
|
||||
|
||||
All models available for download through this document are licensed under the
|
||||
[Creative Commons Attribution-ShareAlike 3.0 license](https://creativecommons.org/licenses/by-sa/3.0/).
|
||||
|
||||
### COCO Object Detection Baselines
|
||||
|
||||
#### Faster R-CNN:
|
||||
<!--
|
||||
(fb only) To update the table in vim:
|
||||
1. Remove the old table: d}
|
||||
2. Copy the below command to the place of the table
|
||||
3. :.!bash
|
||||
|
||||
./gen_html_table.py --config 'COCO-Detection/faster*50*'{1x,3x}'*' 'COCO-Detection/faster*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: faster_rcnn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.551</td>
|
||||
<td align="center">0.102</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">35.7</td>
|
||||
<td align="center">137257644</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/model_final_721ade.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_1x/137257644/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_DC5_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.380</td>
|
||||
<td align="center">0.068</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">37.3</td>
|
||||
<td align="center">137847829</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/model_final_51d356.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_1x/137847829/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.210</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.0</td>
|
||||
<td align="center">37.9</td>
|
||||
<td align="center">137257794</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/model_final_b275ba.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_1x/137257794/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.543</td>
|
||||
<td align="center">0.104</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">38.4</td>
|
||||
<td align="center">137849393</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/model_final_f97cb7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_C4_3x/137849393/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.378</td>
|
||||
<td align="center">0.070</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">39.0</td>
|
||||
<td align="center">137849425</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/model_final_68d202.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_DC5_3x/137849425/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.209</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.0</td>
|
||||
<td align="center">40.2</td>
|
||||
<td align="center">137849458</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.619</td>
|
||||
<td align="center">0.139</td>
|
||||
<td align="center">5.9</td>
|
||||
<td align="center">41.1</td>
|
||||
<td align="center">138204752</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/model_final_298dad.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_C4_3x/138204752/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.452</td>
|
||||
<td align="center">0.086</td>
|
||||
<td align="center">6.1</td>
|
||||
<td align="center">40.6</td>
|
||||
<td align="center">138204841</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/model_final_3e0943.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_DC5_3x/138204841/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.286</td>
|
||||
<td align="center">0.051</td>
|
||||
<td align="center">4.1</td>
|
||||
<td align="center">42.0</td>
|
||||
<td align="center">137851257</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/model_final_f6e8b1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_101_FPN_3x/137851257/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.638</td>
|
||||
<td align="center">0.098</td>
|
||||
<td align="center">6.7</td>
|
||||
<td align="center">43.0</td>
|
||||
<td align="center">139173657</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
#### RetinaNet:
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Detection/retina*50*' 'COCO-Detection/retina*101*' --name R50 R50 R101 --fields lr_sched train_speed inference_speed mem box_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: retinanet_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml">R50</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.200</td>
|
||||
<td align="center">0.055</td>
|
||||
<td align="center">3.9</td>
|
||||
<td align="center">36.5</td>
|
||||
<td align="center">137593951</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/model_final_b796dc.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_1x/137593951/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: retinanet_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml">R50</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.201</td>
|
||||
<td align="center">0.055</td>
|
||||
<td align="center">3.9</td>
|
||||
<td align="center">37.9</td>
|
||||
<td align="center">137849486</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_50_FPN_3x/137849486/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: retinanet_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml">R101</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.280</td>
|
||||
<td align="center">0.068</td>
|
||||
<td align="center">5.1</td>
|
||||
<td align="center">39.9</td>
|
||||
<td align="center">138363263</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/model_final_59f53c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/retinanet_R_101_FPN_3x/138363263/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
#### RPN & Fast R-CNN:
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Detection/rpn*' 'COCO-Detection/fast_rcnn*' --name "RPN R50-C4" "RPN R50-FPN" "Fast R-CNN R50-FPN" --fields lr_sched train_speed inference_speed mem box_AP prop_AR
|
||||
-->
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">prop.<br/>AR</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: rpn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_C4_1x.yaml">RPN R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.130</td>
|
||||
<td align="center">0.034</td>
|
||||
<td align="center">1.5</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">51.6</td>
|
||||
<td align="center">137258005</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/model_final_450694.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_C4_1x/137258005/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: rpn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/rpn_R_50_FPN_1x.yaml">RPN R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.186</td>
|
||||
<td align="center">0.032</td>
|
||||
<td align="center">2.7</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">58.0</td>
|
||||
<td align="center">137258492</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/rpn_R_50_FPN_1x/137258492/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: fast_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml">Fast R-CNN R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.140</td>
|
||||
<td align="center">0.029</td>
|
||||
<td align="center">2.6</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137635226</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Instance Segmentation Baselines with Mask R-CNN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask*50*'{1x,3x}'*' 'COCO-InstanceSegmentation/mask*101*' --name R50-C4 R50-DC5 R50-FPN R50-C4 R50-DC5 R50-FPN R101-C4 R101-DC5 R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_C4_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml">R50-C4</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.584</td>
|
||||
<td align="center">0.110</td>
|
||||
<td align="center">5.2</td>
|
||||
<td align="center">36.8</td>
|
||||
<td align="center">32.2</td>
|
||||
<td align="center">137259246</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/model_final_9243eb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x/137259246/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_DC5_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml">R50-DC5</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.471</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.5</td>
|
||||
<td align="center">38.3</td>
|
||||
<td align="center">34.2</td>
|
||||
<td align="center">137260150</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/model_final_4f86c3.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x/137260150/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">35.2</td>
|
||||
<td align="center">137260431</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml">R50-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.575</td>
|
||||
<td align="center">0.111</td>
|
||||
<td align="center">5.2</td>
|
||||
<td align="center">39.8</td>
|
||||
<td align="center">34.4</td>
|
||||
<td align="center">137849525</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml">R50-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.470</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.5</td>
|
||||
<td align="center">40.0</td>
|
||||
<td align="center">35.9</td>
|
||||
<td align="center">137849551</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_C4_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml">R101-C4</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.652</td>
|
||||
<td align="center">0.145</td>
|
||||
<td align="center">6.3</td>
|
||||
<td align="center">42.6</td>
|
||||
<td align="center">36.7</td>
|
||||
<td align="center">138363239</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/model_final_a2914c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x/138363239/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_DC5_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml">R101-DC5</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.545</td>
|
||||
<td align="center">0.092</td>
|
||||
<td align="center">7.6</td>
|
||||
<td align="center">41.9</td>
|
||||
<td align="center">37.3</td>
|
||||
<td align="center">138363294</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/model_final_0464b7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x/138363294/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.340</td>
|
||||
<td align="center">0.056</td>
|
||||
<td align="center">4.6</td>
|
||||
<td align="center">42.9</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">138205316</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_final_a3ec72.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.690</td>
|
||||
<td align="center">0.103</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">44.3</td>
|
||||
<td align="center">39.5</td>
|
||||
<td align="center">139653917</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/model_final_2d9806.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x/139653917/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Person Keypoint Detection Baselines with Keypoint R-CNN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-Keypoints/*50*' 'COCO-Keypoints/*101*' --name R50-FPN R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP keypoint_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">kp.<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.315</td>
|
||||
<td align="center">0.072</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">53.6</td>
|
||||
<td align="center">64.0</td>
|
||||
<td align="center">137261548</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/model_final_04e291.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x/137261548/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.316</td>
|
||||
<td align="center">0.066</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">55.4</td>
|
||||
<td align="center">65.5</td>
|
||||
<td align="center">137849621</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_101_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.390</td>
|
||||
<td align="center">0.076</td>
|
||||
<td align="center">6.1</td>
|
||||
<td align="center">56.4</td>
|
||||
<td align="center">66.1</td>
|
||||
<td align="center">138363331</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/model_final_997cc7.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x/138363331/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_X_101_32x8d_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml">X101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.738</td>
|
||||
<td align="center">0.121</td>
|
||||
<td align="center">8.7</td>
|
||||
<td align="center">57.3</td>
|
||||
<td align="center">66.0</td>
|
||||
<td align="center">139686956</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/model_final_5ad38f.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x/139686956/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
### COCO Panoptic Segmentation Baselines with Panoptic FPN
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-PanopticSegmentation/*50*' 'COCO-PanopticSegmentation/*101*' --name R50-FPN R50-FPN R101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP PQ
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">PQ</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: panoptic_fpn_R_50_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.304</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">37.6</td>
|
||||
<td align="center">34.7</td>
|
||||
<td align="center">39.4</td>
|
||||
<td align="center">139514544</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/model_final_dbfeb4.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_1x/139514544/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: panoptic_fpn_R_50_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml">R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.302</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">40.0</td>
|
||||
<td align="center">36.5</td>
|
||||
<td align="center">41.5</td>
|
||||
<td align="center">139514569</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: panoptic_fpn_R_101_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml">R101-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.392</td>
|
||||
<td align="center">0.066</td>
|
||||
<td align="center">6.0</td>
|
||||
<td align="center">42.4</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">43.0</td>
|
||||
<td align="center">139514519</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/model_final_cafdb1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x/139514519/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
### LVIS Instance Segmentation Baselines with Mask R-CNN
|
||||
|
||||
Mask R-CNN baselines on the [LVIS dataset](https://lvisdataset.org), v0.5.
|
||||
These baselines are described in Table 3(c) of the [LVIS paper](https://arxiv.org/abs/1908.03195).
|
||||
|
||||
NOTE: the 1x schedule here has the same amount of __iterations__ as the COCO 1x baselines.
|
||||
They are roughly 24 epochs of LVISv0.5 data.
|
||||
The final results of these configs have large variance across different runs.
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'LVIS-InstanceSegmentation/mask*50*' 'LVIS-InstanceSegmentation/mask*101*' --name R50-FPN R101-FPN X101-FPN --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.292</td>
|
||||
<td align="center">0.107</td>
|
||||
<td align="center">7.1</td>
|
||||
<td align="center">23.6</td>
|
||||
<td align="center">24.4</td>
|
||||
<td align="center">144219072</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/model_final_571f7c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/144219072/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_101_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml">R101-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.371</td>
|
||||
<td align="center">0.114</td>
|
||||
<td align="center">7.8</td>
|
||||
<td align="center">25.6</td>
|
||||
<td align="center">25.9</td>
|
||||
<td align="center">144219035</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/model_final_824ab5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x/144219035/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_X_101_32x8d_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x.yaml">X101-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.712</td>
|
||||
<td align="center">0.151</td>
|
||||
<td align="center">10.2</td>
|
||||
<td align="center">26.7</td>
|
||||
<td align="center">27.1</td>
|
||||
<td align="center">144219108</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/model_final_5e3439.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/LVIS-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_1x/144219108/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
|
||||
### Cityscapes & Pascal VOC Baselines
|
||||
|
||||
Simple baselines for
|
||||
* Mask R-CNN on Cityscapes instance segmentation (initialized from COCO pre-training, then trained on Cityscapes fine annotations only)
|
||||
* Faster R-CNN on PASCAL VOC object detection (trained on VOC 2007 train+val + VOC 2012 train+val, tested on VOC 2007 using 11-point interpolated AP)
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Cityscapes/*' 'PascalVOC-Detection/*' --name "R50-FPN, Cityscapes" "R50-C4, VOC" --fields train_speed inference_speed mem box_AP box_AP50 mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">box<br/>AP50</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN -->
|
||||
<tr><td align="left"><a href="configs/Cityscapes/mask_rcnn_R_50_FPN.yaml">R50-FPN, Cityscapes</a></td>
|
||||
<td align="center">0.240</td>
|
||||
<td align="center">0.078</td>
|
||||
<td align="center">4.4</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">36.5</td>
|
||||
<td align="center">142423278</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/model_final_af9cf5.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Cityscapes/mask_rcnn_R_50_FPN/142423278/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: faster_rcnn_R_50_C4 -->
|
||||
<tr><td align="left"><a href="configs/PascalVOC-Detection/faster_rcnn_R_50_C4.yaml">R50-C4, VOC</a></td>
|
||||
<td align="center">0.537</td>
|
||||
<td align="center">0.081</td>
|
||||
<td align="center">4.8</td>
|
||||
<td align="center">51.9</td>
|
||||
<td align="center">80.3</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">142202221</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/model_final_b1acc2.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PascalVOC-Detection/faster_rcnn_R_50_C4/142202221/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
|
||||
### Other Settings
|
||||
|
||||
Ablations for Deformable Conv and Cascade R-CNN:
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml' 'Misc/*R_50_FPN_1x_dconv*' 'Misc/cascade*1x.yaml' 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/*R_50_FPN_3x_dconv*' 'Misc/cascade*3x.yaml' --name "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" "Baseline R50-FPN" "Deformable Conv" "Cascade R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">35.2</td>
|
||||
<td align="center">137260431</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/model_final_a54504.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x/137260431/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_1x_dconv_c3-c5 -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.342</td>
|
||||
<td align="center">0.048</td>
|
||||
<td align="center">3.5</td>
|
||||
<td align="center">41.5</td>
|
||||
<td align="center">37.5</td>
|
||||
<td align="center">138602867</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/model_final_65c703.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_1x_dconv_c3-c5/138602867/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_1x.yaml">Cascade R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.317</td>
|
||||
<td align="center">0.052</td>
|
||||
<td align="center">4.0</td>
|
||||
<td align="center">42.1</td>
|
||||
<td align="center">36.4</td>
|
||||
<td align="center">138602847</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/model_final_e9d89b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_1x/138602847/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_dconv_c3-c5 -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5.yaml">Deformable Conv</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.349</td>
|
||||
<td align="center">0.047</td>
|
||||
<td align="center">3.5</td>
|
||||
<td align="center">42.7</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">144998336</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/model_final_821d0b.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_dconv_c3-c5/144998336/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml">Cascade R-CNN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.328</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">4.0</td>
|
||||
<td align="center">44.3</td>
|
||||
<td align="center">38.5</td>
|
||||
<td align="center">144998488</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
Ablations for normalization methods, and a few models trained from scratch following [Rethinking ImageNet Pre-training](https://arxiv.org/abs/1811.08883).
|
||||
(Note: The baseline uses `2fc` head while the others use [`4conv1fc` head](https://arxiv.org/abs/1803.08494))
|
||||
<!--
|
||||
./gen_html_table.py --config 'COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml' 'Misc/mask*50_FPN_3x_gn.yaml' 'Misc/mask*50_FPN_3x_syncbn.yaml' 'Misc/scratch*' --name "Baseline R50-FPN" "GN" "SyncBN" "GN (from scratch)" "GN (from scratch)" "SyncBN (from scratch)" --fields lr_sched train_speed inference_speed mem box_AP mask_AP
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x -->
|
||||
<tr><td align="left"><a href="configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml">Baseline R50-FPN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.261</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">41.0</td>
|
||||
<td align="center">37.2</td>
|
||||
<td align="center">137849600</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_gn.yaml">GN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.356</td>
|
||||
<td align="center">0.069</td>
|
||||
<td align="center">7.3</td>
|
||||
<td align="center">42.6</td>
|
||||
<td align="center">38.6</td>
|
||||
<td align="center">138602888</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/model_final_dc5d9e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_gn/138602888/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_3x_syncbn -->
|
||||
<tr><td align="left"><a href="configs/Misc/mask_rcnn_R_50_FPN_3x_syncbn.yaml">SyncBN</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.371</td>
|
||||
<td align="center">0.053</td>
|
||||
<td align="center">5.5</td>
|
||||
<td align="center">41.9</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center">169527823</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/model_final_3b3c51.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/mask_rcnn_R_50_FPN_3x_syncbn/169527823/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_3x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn.yaml">GN (from scratch)</a></td>
|
||||
<td align="center">3x</td>
|
||||
<td align="center">0.400</td>
|
||||
<td align="center">0.069</td>
|
||||
<td align="center">9.8</td>
|
||||
<td align="center">39.9</td>
|
||||
<td align="center">36.6</td>
|
||||
<td align="center">138602908</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/model_final_01ca85.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_3x_gn/138602908/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_gn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn.yaml">GN (from scratch)</a></td>
|
||||
<td align="center">9x</td>
|
||||
<td align="center">N/A</td>
|
||||
<td align="center">0.070</td>
|
||||
<td align="center">9.8</td>
|
||||
<td align="center">43.7</td>
|
||||
<td align="center">39.6</td>
|
||||
<td align="center">183808979</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/model_final_da7b4c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_gn/183808979/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: scratch_mask_rcnn_R_50_FPN_9x_syncbn -->
|
||||
<tr><td align="left"><a href="configs/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn.yaml">SyncBN (from scratch)</a></td>
|
||||
<td align="center">9x</td>
|
||||
<td align="center">N/A</td>
|
||||
<td align="center">0.055</td>
|
||||
<td align="center">7.2</td>
|
||||
<td align="center">43.6</td>
|
||||
<td align="center">39.3</td>
|
||||
<td align="center">184226666</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/model_final_5ce33e.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/scratch_mask_rcnn_R_50_FPN_9x_syncbn/184226666/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
|
||||
A few very large models trained for a long time, for demo purposes. They are trained using multiple machines:
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Misc/panoptic_*dconv*' 'Misc/cascade_*152*' --name "Panoptic FPN R101" "Mask R-CNN X152" --fields inference_speed mem box_AP mask_AP PQ
|
||||
# manually add TTA results
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">PQ</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: panoptic_fpn_R_101_dconv_cascade_gn_3x -->
|
||||
<tr><td align="left"><a href="configs/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x.yaml">Panoptic FPN R101</a></td>
|
||||
<td align="center">0.107</td>
|
||||
<td align="center">11.4</td>
|
||||
<td align="center">47.4</td>
|
||||
<td align="center">41.3</td>
|
||||
<td align="center">46.1</td>
|
||||
<td align="center">139797668</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/model_final_be35db.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/panoptic_fpn_R_101_dconv_cascade_gn_3x/139797668/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
||||
<tr><td align="left"><a href="configs/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml">Mask R-CNN X152</a></td>
|
||||
<td align="center">0.242</td>
|
||||
<td align="center">15.1</td>
|
||||
<td align="center">50.2</td>
|
||||
<td align="center">44.0</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">18131413</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/model_0039999_e76410.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Misc/cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv/18131413/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: TTA cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv -->
|
||||
<tr><td align="left">above + test-time aug.</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">51.9</td>
|
||||
<td align="center">45.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
</tr>
|
||||
</tbody></table>
|
@ -0,0 +1,56 @@
|
||||
<img src=".github/Detectron2-Logo-Horz.svg" width="300" >
|
||||
|
||||
Detectron2 is Facebook AI Research's next generation software system
|
||||
that implements state-of-the-art object detection algorithms.
|
||||
It is a ground-up rewrite of the previous version,
|
||||
[Detectron](https://github.com/facebookresearch/Detectron/),
|
||||
and it originates from [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark/).
|
||||
|
||||
<div align="center">
|
||||
<img src="https://user-images.githubusercontent.com/1381301/66535560-d3422200-eace-11e9-9123-5535d469db19.png"/>
|
||||
</div>
|
||||
|
||||
### What's New
|
||||
* It is powered by the [PyTorch](https://pytorch.org) deep learning framework.
|
||||
* Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
|
||||
* Can be used as a library to support [different projects](projects/) on top of it.
|
||||
We'll open source more research projects in this way.
|
||||
* It [trains much faster](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
||||
|
||||
See our [blog post](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/)
|
||||
to see more demos and learn about detectron2.
|
||||
|
||||
## Installation
|
||||
|
||||
See [INSTALL.md](INSTALL.md).
|
||||
|
||||
## Quick Start
|
||||
|
||||
See [GETTING_STARTED.md](GETTING_STARTED.md),
|
||||
or the [Colab Notebook](https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5).
|
||||
|
||||
Learn more at our [documentation](https://detectron2.readthedocs.org).
|
||||
And see [projects/](projects/) for some projects that are built on top of detectron2.
|
||||
|
||||
## Model Zoo and Baselines
|
||||
|
||||
We provide a large set of baseline results and trained models available for download in the [Detectron2 Model Zoo](MODEL_ZOO.md).
|
||||
|
||||
|
||||
## License
|
||||
|
||||
Detectron2 is released under the [Apache 2.0 license](LICENSE).
|
||||
|
||||
## Citing Detectron2
|
||||
|
||||
If you use Detectron2 in your research or wish to refer to the baseline results published in the [Model Zoo](MODEL_ZOO.md), please use the following BibTeX entry.
|
||||
|
||||
```BibTeX
|
||||
@misc{wu2019detectron2,
|
||||
author = {Yuxin Wu and Alexander Kirillov and Francisco Massa and
|
||||
Wan-Yen Lo and Ross Girshick},
|
||||
title = {Detectron2},
|
||||
howpublished = {\url{https://github.com/facebookresearch/detectron2}},
|
||||
year = {2019}
|
||||
}
|
||||
```
|
@ -0,0 +1,18 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "Res5ROIHeads"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@ -0,0 +1,31 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res5"]
|
||||
RES5_DILATION: 2
|
||||
RPN:
|
||||
IN_FEATURES: ["res5"]
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["res5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@ -0,0 +1,42 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@ -0,0 +1,24 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "RetinaNet"
|
||||
BACKBONE:
|
||||
NAME: "build_retinanet_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res3", "res4", "res5"]
|
||||
RETINANET:
|
||||
IOU_THRESHOLDS: [0.4, 0.5]
|
||||
IOU_LABELS: [0, -1, 1]
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@ -0,0 +1,17 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
LOAD_PROPOSALS: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
PROPOSAL_GENERATOR:
|
||||
NAME: "PrecomputedProposals"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
||||
TEST: ("coco_2017_val",)
|
||||
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
DATALOADER:
|
||||
# proposals are part of the dataset_dicts, and take a lot of RAM
|
||||
NUM_WORKERS: 2
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,13 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: False
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,5 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 12000
|
||||
POST_NMS_TOPK_TEST: 2000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
POST_NMS_TOPK_TEST: 2000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,13 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,15 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
KEYPOINT_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
||||
RPN:
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,5 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,12 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
MASK_ON: True
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_panoptic_separated",)
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,5 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,27 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
# For better, more stable performance initialize from COCO
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 8
|
||||
# This is similar to the setting used in Mask R-CNN paper, Appendix A
|
||||
# But there are some differences, e.g., we did not initialize the output
|
||||
# layer using the corresponding classes from COCO
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 1024
|
||||
MAX_SIZE_TRAIN: 2048
|
||||
MAX_SIZE_TEST: 2048
|
||||
DATASETS:
|
||||
TRAIN: ("cityscapes_fine_instance_seg_train",)
|
||||
TEST: ("cityscapes_fine_instance_seg_val",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
STEPS: (18000,)
|
||||
MAX_ITER: 24000
|
||||
IMS_PER_BATCH: 8
|
||||
TEST:
|
||||
EVAL_PERIOD: 8000
|
@ -0,0 +1,83 @@
|
||||
|
||||
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
|
||||
|
||||
The differences in implementation details are shared in
|
||||
[Compatibility with Other Libraries](../../docs/notes/compatibility.md).
|
||||
|
||||
The differences in model zoo's experimental settings include:
|
||||
* Use scale augmentation during training. This improves AP with lower training cost.
|
||||
* Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
|
||||
affect other AP.
|
||||
* Use `POOLER_SAMPLING_RATIO=0` instead of 2. This does not significantly affect AP.
|
||||
* Use `ROIAlignV2`. This does not significantly affect AP.
|
||||
|
||||
In this directory, we provide a few configs that __do not__ have the above changes.
|
||||
They mimic Detectron's behavior as close as possible,
|
||||
and provide a fair comparison of accuracy and speed against Detectron.
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Detectron1-Comparisons/*.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">kp.<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="faster_rcnn_R_50_FPN_noaug_1x.yaml">Faster R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.219</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.1</td>
|
||||
<td align="center">36.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781054</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="keypoint_rcnn_R_50_FPN_1x.yaml">Keypoint R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.313</td>
|
||||
<td align="center">0.071</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">53.1</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">64.2</td>
|
||||
<td align="center">137781195</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="mask_rcnn_R_50_FPN_noaug_1x.yaml">Mask R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.273</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center">34.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781281</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
## Comparisons:
|
||||
|
||||
* Faster R-CNN: Detectron's AP is 36.7, similar to ours.
|
||||
* Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
|
||||
[bug](https://github.com/facebookresearch/Detectron/issues/459) lead to a drop in box AP, and can be
|
||||
compensated back by some parameter tuning.
|
||||
* Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
|
||||
|
||||
For speed comparison, see [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
@ -0,0 +1,17 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
@ -0,0 +1,27 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
@ -0,0 +1,20 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
ROI_MASK_HEAD:
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@ -0,0 +1,23 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@ -0,0 +1,12 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
@ -0,0 +1,15 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@ -0,0 +1,36 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 128
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
@ -0,0 +1,42 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
# WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
WEIGHTS: "model_0039999_e76410.pkl"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
# IMS_PER_BATCH: 128
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_train","VIP_trainval")
|
||||
TEST: ("CIHP_val",)
|
@ -0,0 +1,25 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NMS_THRESH_TEST: 0.95
|
||||
SCORE_THRESH_TEST: 0.5
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (30000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
DATASETS:
|
||||
TRAIN: ("demo_train",)
|
||||
TEST: ("demo_val",)
|
||||
OUTPUT_DIR: "../../data/DemoDataset/detectron2_prediction"
|
@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
CLS_AGNOSTIC_MASK: True
|
@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user