202 lines
6.7 KiB
Python
202 lines
6.7 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
"""
|
|
@Author : Peike Li
|
|
@Contact : peike.li@yahoo.com
|
|
@File : datasets.py
|
|
@Time : 8/4/19 3:35 PM
|
|
@Desc :
|
|
@License : This source code is licensed under the license found in the
|
|
LICENSE file in the root directory of this source tree.
|
|
"""
|
|
|
|
import os
|
|
import numpy as np
|
|
import random
|
|
import torch
|
|
import cv2
|
|
from torch.utils import data
|
|
from utils.transforms import get_affine_transform
|
|
|
|
|
|
class LIPDataSet(data.Dataset):
|
|
def __init__(self, root, dataset, crop_size=[473, 473], scale_factor=0.25,
|
|
rotation_factor=30, ignore_label=255, transform=None):
|
|
self.root = root
|
|
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
|
self.crop_size = np.asarray(crop_size)
|
|
self.ignore_label = ignore_label
|
|
self.scale_factor = scale_factor
|
|
self.rotation_factor = rotation_factor
|
|
self.flip_prob = 0.5
|
|
self.transform = transform
|
|
self.dataset = dataset
|
|
|
|
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
|
train_list = [i_id.strip() for i_id in open(list_path)]
|
|
|
|
self.train_list = train_list
|
|
self.number_samples = len(self.train_list)
|
|
|
|
def __len__(self):
|
|
return self.number_samples
|
|
|
|
def _box2cs(self, box):
|
|
x, y, w, h = box[:4]
|
|
return self._xywh2cs(x, y, w, h)
|
|
|
|
def _xywh2cs(self, x, y, w, h):
|
|
center = np.zeros((2), dtype=np.float32)
|
|
center[0] = x + w * 0.5
|
|
center[1] = y + h * 0.5
|
|
if w > self.aspect_ratio * h:
|
|
h = w * 1.0 / self.aspect_ratio
|
|
elif w < self.aspect_ratio * h:
|
|
w = h * self.aspect_ratio
|
|
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
|
return center, scale
|
|
|
|
def __getitem__(self, index):
|
|
train_item = self.train_list[index]
|
|
|
|
im_path = os.path.join(self.root, self.dataset + '_images', train_item + '.jpg')
|
|
parsing_anno_path = os.path.join(self.root, self.dataset + '_segmentations', train_item + '.png')
|
|
|
|
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
|
h, w, _ = im.shape
|
|
parsing_anno = np.zeros((h, w), dtype=np.long)
|
|
|
|
# Get person center and scale
|
|
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
|
r = 0
|
|
|
|
if self.dataset != 'test':
|
|
# Get pose annotation
|
|
parsing_anno = cv2.imread(parsing_anno_path, cv2.IMREAD_GRAYSCALE)
|
|
if self.dataset == 'train' or self.dataset == 'trainval':
|
|
sf = self.scale_factor
|
|
rf = self.rotation_factor
|
|
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
|
|
r = np.clip(np.random.randn() * rf, -rf * 2, rf * 2) if random.random() <= 0.6 else 0
|
|
|
|
if random.random() <= self.flip_prob:
|
|
im = im[:, ::-1, :]
|
|
parsing_anno = parsing_anno[:, ::-1]
|
|
person_center[0] = im.shape[1] - person_center[0] - 1
|
|
right_idx = [15, 17, 19]
|
|
left_idx = [14, 16, 18]
|
|
for i in range(0, 3):
|
|
right_pos = np.where(parsing_anno == right_idx[i])
|
|
left_pos = np.where(parsing_anno == left_idx[i])
|
|
parsing_anno[right_pos[0], right_pos[1]] = left_idx[i]
|
|
parsing_anno[left_pos[0], left_pos[1]] = right_idx[i]
|
|
|
|
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
|
input = cv2.warpAffine(
|
|
im,
|
|
trans,
|
|
(int(self.crop_size[1]), int(self.crop_size[0])),
|
|
flags=cv2.INTER_LINEAR,
|
|
borderMode=cv2.BORDER_CONSTANT,
|
|
borderValue=(0, 0, 0))
|
|
|
|
if self.transform:
|
|
input = self.transform(input)
|
|
|
|
meta = {
|
|
'name': train_item,
|
|
'center': person_center,
|
|
'height': h,
|
|
'width': w,
|
|
'scale': s,
|
|
'rotation': r
|
|
}
|
|
|
|
if self.dataset == 'val' or self.dataset == 'test':
|
|
return input, meta
|
|
else:
|
|
label_parsing = cv2.warpAffine(
|
|
parsing_anno,
|
|
trans,
|
|
(int(self.crop_size[1]), int(self.crop_size[0])),
|
|
flags=cv2.INTER_NEAREST,
|
|
borderMode=cv2.BORDER_CONSTANT,
|
|
borderValue=(255))
|
|
|
|
label_parsing = torch.from_numpy(label_parsing)
|
|
|
|
return input, label_parsing, meta
|
|
|
|
|
|
class LIPDataValSet(data.Dataset):
|
|
def __init__(self, root, dataset='val', crop_size=[473, 473], transform=None, flip=False):
|
|
self.root = root
|
|
self.crop_size = crop_size
|
|
self.transform = transform
|
|
self.flip = flip
|
|
self.dataset = dataset
|
|
self.root = root
|
|
self.aspect_ratio = crop_size[1] * 1.0 / crop_size[0]
|
|
self.crop_size = np.asarray(crop_size)
|
|
|
|
list_path = os.path.join(self.root, self.dataset + '_id.txt')
|
|
val_list = [i_id.strip() for i_id in open(list_path)]
|
|
|
|
self.val_list = val_list
|
|
self.number_samples = len(self.val_list)
|
|
|
|
def __len__(self):
|
|
return len(self.val_list)
|
|
|
|
def _box2cs(self, box):
|
|
x, y, w, h = box[:4]
|
|
return self._xywh2cs(x, y, w, h)
|
|
|
|
def _xywh2cs(self, x, y, w, h):
|
|
center = np.zeros((2), dtype=np.float32)
|
|
center[0] = x + w * 0.5
|
|
center[1] = y + h * 0.5
|
|
if w > self.aspect_ratio * h:
|
|
h = w * 1.0 / self.aspect_ratio
|
|
elif w < self.aspect_ratio * h:
|
|
w = h * self.aspect_ratio
|
|
scale = np.array([w * 1.0, h * 1.0], dtype=np.float32)
|
|
|
|
return center, scale
|
|
|
|
def __getitem__(self, index):
|
|
val_item = self.val_list[index]
|
|
# Load training image
|
|
im_path = os.path.join(self.root, self.dataset + '_images', val_item + '.jpg')
|
|
im = cv2.imread(im_path, cv2.IMREAD_COLOR)
|
|
h, w, _ = im.shape
|
|
# Get person center and scale
|
|
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
|
|
r = 0
|
|
trans = get_affine_transform(person_center, s, r, self.crop_size)
|
|
input = cv2.warpAffine(
|
|
im,
|
|
trans,
|
|
(int(self.crop_size[1]), int(self.crop_size[0])),
|
|
flags=cv2.INTER_LINEAR,
|
|
borderMode=cv2.BORDER_CONSTANT,
|
|
borderValue=(0, 0, 0))
|
|
input = self.transform(input)
|
|
flip_input = input.flip(dims=[-1])
|
|
if self.flip:
|
|
batch_input_im = torch.stack([input, flip_input])
|
|
else:
|
|
batch_input_im = input
|
|
|
|
meta = {
|
|
'name': val_item,
|
|
'center': person_center,
|
|
'height': h,
|
|
'width': w,
|
|
'scale': s,
|
|
'rotation': r
|
|
}
|
|
|
|
return batch_input_im, meta
|