172 lines
6.2 KiB
Python
172 lines
6.2 KiB
Python
#!/usr/bin/env python
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
|
"""
|
|
Detection Training Script.
|
|
|
|
This scripts reads a given config file and runs the training or evaluation.
|
|
It is an entry point that is made to train standard models in detectron2.
|
|
|
|
In order to let one script support training of many models,
|
|
this script contains logic that are specific to these built-in models and therefore
|
|
may not be suitable for your own project.
|
|
For example, your research project perhaps only needs a single "evaluator".
|
|
|
|
Therefore, we recommend you to use detectron2 as an library and take
|
|
this file as an example of how to use the library.
|
|
You may want to write your own script with your data and other customizations.
|
|
"""
|
|
|
|
import logging
|
|
import os
|
|
from collections import OrderedDict
|
|
import torch
|
|
|
|
import detectron2.utils.comm as comm
|
|
from detectron2.checkpoint import DetectionCheckpointer
|
|
from detectron2.config import get_cfg
|
|
from detectron2.data import MetadataCatalog
|
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
|
|
from detectron2.evaluation import (
|
|
CityscapesInstanceEvaluator,
|
|
CityscapesSemSegEvaluator,
|
|
COCOEvaluator,
|
|
COCOPanopticEvaluator,
|
|
DatasetEvaluators,
|
|
LVISEvaluator,
|
|
PascalVOCDetectionEvaluator,
|
|
SemSegEvaluator,
|
|
verify_results,
|
|
)
|
|
from detectron2.modeling import GeneralizedRCNNWithTTA
|
|
|
|
|
|
class Trainer(DefaultTrainer):
|
|
"""
|
|
We use the "DefaultTrainer" which contains pre-defined default logic for
|
|
standard training workflow. They may not work for you, especially if you
|
|
are working on a new research project. In that case you can use the cleaner
|
|
"SimpleTrainer", or write your own training loop. You can use
|
|
"tools/plain_train_net.py" as an example.
|
|
"""
|
|
|
|
@classmethod
|
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
|
|
"""
|
|
Create evaluator(s) for a given dataset.
|
|
This uses the special metadata "evaluator_type" associated with each builtin dataset.
|
|
For your own dataset, you can simply create an evaluator manually in your
|
|
script and do not have to worry about the hacky if-else logic here.
|
|
"""
|
|
if output_folder is None:
|
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
|
|
evaluator_list = []
|
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
|
|
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
|
|
evaluator_list.append(
|
|
SemSegEvaluator(
|
|
dataset_name,
|
|
distributed=True,
|
|
num_classes=cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
|
|
ignore_label=cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
|
|
output_dir=output_folder,
|
|
)
|
|
)
|
|
if evaluator_type in ["coco", "coco_panoptic_seg"]:
|
|
evaluator_list.append(COCOEvaluator(dataset_name, cfg, True, output_folder))
|
|
if evaluator_type == "coco_panoptic_seg":
|
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
|
|
if evaluator_type == "cityscapes_instance":
|
|
assert (
|
|
torch.cuda.device_count() >= comm.get_rank()
|
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
|
return CityscapesInstanceEvaluator(dataset_name)
|
|
if evaluator_type == "cityscapes_sem_seg":
|
|
assert (
|
|
torch.cuda.device_count() >= comm.get_rank()
|
|
), "CityscapesEvaluator currently do not work with multiple machines."
|
|
return CityscapesSemSegEvaluator(dataset_name)
|
|
elif evaluator_type == "pascal_voc":
|
|
return PascalVOCDetectionEvaluator(dataset_name)
|
|
elif evaluator_type == "lvis":
|
|
return LVISEvaluator(dataset_name, cfg, True, output_folder)
|
|
if len(evaluator_list) == 0:
|
|
raise NotImplementedError(
|
|
"no Evaluator for the dataset {} with the type {}".format(
|
|
dataset_name, evaluator_type
|
|
)
|
|
)
|
|
elif len(evaluator_list) == 1:
|
|
return evaluator_list[0]
|
|
return DatasetEvaluators(evaluator_list)
|
|
|
|
@classmethod
|
|
def test_with_TTA(cls, cfg, model):
|
|
logger = logging.getLogger("detectron2.trainer")
|
|
# In the end of training, run an evaluation with TTA
|
|
# Only support some R-CNN models.
|
|
logger.info("Running inference with test-time augmentation ...")
|
|
model = GeneralizedRCNNWithTTA(cfg, model)
|
|
evaluators = [
|
|
cls.build_evaluator(
|
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
|
|
)
|
|
for name in cfg.DATASETS.TEST
|
|
]
|
|
res = cls.test(cfg, model, evaluators)
|
|
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
|
|
return res
|
|
|
|
|
|
def setup(args):
|
|
"""
|
|
Create configs and perform basic setups.
|
|
"""
|
|
cfg = get_cfg()
|
|
cfg.merge_from_file(args.config_file)
|
|
cfg.merge_from_list(args.opts)
|
|
cfg.freeze()
|
|
default_setup(cfg, args)
|
|
return cfg
|
|
|
|
|
|
def main(args):
|
|
cfg = setup(args)
|
|
|
|
if args.eval_only:
|
|
model = Trainer.build_model(cfg)
|
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
|
|
cfg.MODEL.WEIGHTS, resume=args.resume
|
|
)
|
|
res = Trainer.test(cfg, model)
|
|
if cfg.TEST.AUG.ENABLED:
|
|
res.update(Trainer.test_with_TTA(cfg, model))
|
|
if comm.is_main_process():
|
|
verify_results(cfg, res)
|
|
return res
|
|
|
|
"""
|
|
If you'd like to do anything fancier than the standard training logic,
|
|
consider writing your own training loop (see plain_train_net.py) or
|
|
subclassing the trainer.
|
|
"""
|
|
trainer = Trainer(cfg)
|
|
trainer.resume_or_load(resume=args.resume)
|
|
if cfg.TEST.AUG.ENABLED:
|
|
trainer.register_hooks(
|
|
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
|
|
)
|
|
return trainer.train()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = default_argument_parser().parse_args()
|
|
print("Command Line Args:", args)
|
|
launch(
|
|
main,
|
|
args.num_gpus,
|
|
num_machines=args.num_machines,
|
|
machine_rank=args.machine_rank,
|
|
dist_url=args.dist_url,
|
|
args=(args,),
|
|
)
|