46 lines
1.7 KiB
Python
46 lines
1.7 KiB
Python
import cv2
|
|
import numpy as np
|
|
import os
|
|
|
|
import onnxruntime as ort
|
|
from .onnxdet import inference_detector
|
|
from .onnxpose import inference_pose
|
|
|
|
class Wholebody:
|
|
def __init__(self, model_root, device):
|
|
providers = ['CPUExecutionProvider'
|
|
] if device == 'cpu' else ['CUDAExecutionProvider']
|
|
onnx_det = os.path.join(model_root, 'dwpose/yolox_l.onnx')
|
|
onnx_pose = os.path.join(model_root, 'dwpose/dw-ll_ucoco_384.onnx')
|
|
|
|
self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
|
|
self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
|
|
|
|
def __call__(self, oriImg):
|
|
det_result = inference_detector(self.session_det, oriImg)
|
|
keypoints, scores = inference_pose(self.session_pose, det_result, oriImg)
|
|
|
|
keypoints_info = np.concatenate(
|
|
(keypoints, scores[..., None]), axis=-1)
|
|
# compute neck joint
|
|
neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
|
|
# neck score when visualizing pred
|
|
neck[:, 2:4] = np.logical_and(
|
|
keypoints_info[:, 5, 2:4] > 0.3,
|
|
keypoints_info[:, 6, 2:4] > 0.3).astype(int)
|
|
new_keypoints_info = np.insert(
|
|
keypoints_info, 17, neck, axis=1)
|
|
mmpose_idx = [
|
|
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
|
|
]
|
|
openpose_idx = [
|
|
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
|
|
]
|
|
new_keypoints_info[:, openpose_idx] = \
|
|
new_keypoints_info[:, mmpose_idx]
|
|
keypoints_info = new_keypoints_info
|
|
|
|
keypoints, scores = keypoints_info[
|
|
..., :2], keypoints_info[..., 2]
|
|
|
|
return keypoints, scores |