Add at new repo again
This commit is contained in:
		@@ -0,0 +1,156 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- encoding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
@Author  :   Peike Li
 | 
			
		||||
@Contact :   peike.li@yahoo.com
 | 
			
		||||
@File    :   mobilenetv2.py
 | 
			
		||||
@Time    :   8/4/19 3:35 PM
 | 
			
		||||
@Desc    :   
 | 
			
		||||
@License :   This source code is licensed under the license found in the 
 | 
			
		||||
             LICENSE file in the root directory of this source tree.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import math
 | 
			
		||||
import functools
 | 
			
		||||
 | 
			
		||||
from modules import InPlaceABN, InPlaceABNSync
 | 
			
		||||
 | 
			
		||||
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')
 | 
			
		||||
 | 
			
		||||
__all__ = ['mobilenetv2']
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def conv_bn(inp, oup, stride):
 | 
			
		||||
    return nn.Sequential(
 | 
			
		||||
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
 | 
			
		||||
        BatchNorm2d(oup),
 | 
			
		||||
        nn.ReLU6(inplace=True)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def conv_1x1_bn(inp, oup):
 | 
			
		||||
    return nn.Sequential(
 | 
			
		||||
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
 | 
			
		||||
        BatchNorm2d(oup),
 | 
			
		||||
        nn.ReLU6(inplace=True)
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class InvertedResidual(nn.Module):
 | 
			
		||||
    def __init__(self, inp, oup, stride, expand_ratio):
 | 
			
		||||
        super(InvertedResidual, self).__init__()
 | 
			
		||||
        self.stride = stride
 | 
			
		||||
        assert stride in [1, 2]
 | 
			
		||||
 | 
			
		||||
        hidden_dim = round(inp * expand_ratio)
 | 
			
		||||
        self.use_res_connect = self.stride == 1 and inp == oup
 | 
			
		||||
 | 
			
		||||
        if expand_ratio == 1:
 | 
			
		||||
            self.conv = nn.Sequential(
 | 
			
		||||
                # dw
 | 
			
		||||
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
 | 
			
		||||
                BatchNorm2d(hidden_dim),
 | 
			
		||||
                nn.ReLU6(inplace=True),
 | 
			
		||||
                # pw-linear
 | 
			
		||||
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
 | 
			
		||||
                BatchNorm2d(oup),
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            self.conv = nn.Sequential(
 | 
			
		||||
                # pw
 | 
			
		||||
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
 | 
			
		||||
                BatchNorm2d(hidden_dim),
 | 
			
		||||
                nn.ReLU6(inplace=True),
 | 
			
		||||
                # dw
 | 
			
		||||
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
 | 
			
		||||
                BatchNorm2d(hidden_dim),
 | 
			
		||||
                nn.ReLU6(inplace=True),
 | 
			
		||||
                # pw-linear
 | 
			
		||||
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
 | 
			
		||||
                BatchNorm2d(oup),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        if self.use_res_connect:
 | 
			
		||||
            return x + self.conv(x)
 | 
			
		||||
        else:
 | 
			
		||||
            return self.conv(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class MobileNetV2(nn.Module):
 | 
			
		||||
    def __init__(self, n_class=1000, input_size=224, width_mult=1.):
 | 
			
		||||
        super(MobileNetV2, self).__init__()
 | 
			
		||||
        block = InvertedResidual
 | 
			
		||||
        input_channel = 32
 | 
			
		||||
        last_channel = 1280
 | 
			
		||||
        interverted_residual_setting = [
 | 
			
		||||
            # t, c, n, s
 | 
			
		||||
            [1, 16, 1, 1],
 | 
			
		||||
            [6, 24, 2, 2],  # layer 2
 | 
			
		||||
            [6, 32, 3, 2],  # layer 3
 | 
			
		||||
            [6, 64, 4, 2],
 | 
			
		||||
            [6, 96, 3, 1],  # layer 4
 | 
			
		||||
            [6, 160, 3, 2],
 | 
			
		||||
            [6, 320, 1, 1],  # layer 5
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        # building first layer
 | 
			
		||||
        assert input_size % 32 == 0
 | 
			
		||||
        input_channel = int(input_channel * width_mult)
 | 
			
		||||
        self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
 | 
			
		||||
        self.features = [conv_bn(3, input_channel, 2)]
 | 
			
		||||
        # building inverted residual blocks
 | 
			
		||||
        for t, c, n, s in interverted_residual_setting:
 | 
			
		||||
            output_channel = int(c * width_mult)
 | 
			
		||||
            for i in range(n):
 | 
			
		||||
                if i == 0:
 | 
			
		||||
                    self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
 | 
			
		||||
                else:
 | 
			
		||||
                    self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
 | 
			
		||||
                input_channel = output_channel
 | 
			
		||||
        # building last several layers
 | 
			
		||||
        self.features.append(conv_1x1_bn(input_channel, self.last_channel))
 | 
			
		||||
        # make it nn.Sequential
 | 
			
		||||
        self.features = nn.Sequential(*self.features)
 | 
			
		||||
 | 
			
		||||
        # building classifier
 | 
			
		||||
        self.classifier = nn.Sequential(
 | 
			
		||||
            nn.Dropout(0.2),
 | 
			
		||||
            nn.Linear(self.last_channel, n_class),
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self._initialize_weights()
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.features(x)
 | 
			
		||||
        x = x.mean(3).mean(2)
 | 
			
		||||
        x = self.classifier(x)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
    def _initialize_weights(self):
 | 
			
		||||
        for m in self.modules():
 | 
			
		||||
            if isinstance(m, nn.Conv2d):
 | 
			
		||||
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
                m.weight.data.normal_(0, math.sqrt(2. / n))
 | 
			
		||||
                if m.bias is not None:
 | 
			
		||||
                    m.bias.data.zero_()
 | 
			
		||||
            elif isinstance(m, BatchNorm2d):
 | 
			
		||||
                m.weight.data.fill_(1)
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
            elif isinstance(m, nn.Linear):
 | 
			
		||||
                n = m.weight.size(1)
 | 
			
		||||
                m.weight.data.normal_(0, 0.01)
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mobilenetv2(pretrained=False, **kwargs):
 | 
			
		||||
    """Constructs a MobileNet_V2 model.
 | 
			
		||||
    Args:
 | 
			
		||||
        pretrained (bool): If True, returns a model pre-trained on ImageNet
 | 
			
		||||
    """
 | 
			
		||||
    model = MobileNetV2(n_class=1000, **kwargs)
 | 
			
		||||
    if pretrained:
 | 
			
		||||
        model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False)
 | 
			
		||||
    return model
 | 
			
		||||
							
								
								
									
										205
									
								
								vton-api/preprocess/humanparsing/networks/backbone/resnet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										205
									
								
								vton-api/preprocess/humanparsing/networks/backbone/resnet.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,205 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- encoding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
@Author  :   Peike Li
 | 
			
		||||
@Contact :   peike.li@yahoo.com
 | 
			
		||||
@File    :   resnet.py
 | 
			
		||||
@Time    :   8/4/19 3:35 PM
 | 
			
		||||
@Desc    :   
 | 
			
		||||
@License :   This source code is licensed under the license found in the 
 | 
			
		||||
             LICENSE file in the root directory of this source tree.
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import functools
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import math
 | 
			
		||||
from torch.utils.model_zoo import load_url
 | 
			
		||||
 | 
			
		||||
from modules import InPlaceABNSync
 | 
			
		||||
 | 
			
		||||
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')
 | 
			
		||||
 | 
			
		||||
__all__ = ['ResNet', 'resnet18', 'resnet50', 'resnet101']  # resnet101 is coming soon!
 | 
			
		||||
 | 
			
		||||
model_urls = {
 | 
			
		||||
    'resnet18': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet18-imagenet.pth',
 | 
			
		||||
    'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth',
 | 
			
		||||
    'resnet101': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet101-imagenet.pth'
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def conv3x3(in_planes, out_planes, stride=1):
 | 
			
		||||
    "3x3 convolution with padding"
 | 
			
		||||
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
 | 
			
		||||
                     padding=1, bias=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BasicBlock(nn.Module):
 | 
			
		||||
    expansion = 1
 | 
			
		||||
 | 
			
		||||
    def __init__(self, inplanes, planes, stride=1, downsample=None):
 | 
			
		||||
        super(BasicBlock, self).__init__()
 | 
			
		||||
        self.conv1 = conv3x3(inplanes, planes, stride)
 | 
			
		||||
        self.bn1 = BatchNorm2d(planes)
 | 
			
		||||
        self.relu = nn.ReLU(inplace=True)
 | 
			
		||||
        self.conv2 = conv3x3(planes, planes)
 | 
			
		||||
        self.bn2 = BatchNorm2d(planes)
 | 
			
		||||
        self.downsample = downsample
 | 
			
		||||
        self.stride = stride
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        residual = x
 | 
			
		||||
 | 
			
		||||
        out = self.conv1(x)
 | 
			
		||||
        out = self.bn1(out)
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        out = self.conv2(out)
 | 
			
		||||
        out = self.bn2(out)
 | 
			
		||||
 | 
			
		||||
        if self.downsample is not None:
 | 
			
		||||
            residual = self.downsample(x)
 | 
			
		||||
 | 
			
		||||
        out += residual
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Bottleneck(nn.Module):
 | 
			
		||||
    expansion = 4
 | 
			
		||||
 | 
			
		||||
    def __init__(self, inplanes, planes, stride=1, downsample=None):
 | 
			
		||||
        super(Bottleneck, self).__init__()
 | 
			
		||||
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
 | 
			
		||||
        self.bn1 = BatchNorm2d(planes)
 | 
			
		||||
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
 | 
			
		||||
                               padding=1, bias=False)
 | 
			
		||||
        self.bn2 = BatchNorm2d(planes)
 | 
			
		||||
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
 | 
			
		||||
        self.bn3 = BatchNorm2d(planes * 4)
 | 
			
		||||
        self.relu = nn.ReLU(inplace=True)
 | 
			
		||||
        self.downsample = downsample
 | 
			
		||||
        self.stride = stride
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        residual = x
 | 
			
		||||
 | 
			
		||||
        out = self.conv1(x)
 | 
			
		||||
        out = self.bn1(out)
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        out = self.conv2(out)
 | 
			
		||||
        out = self.bn2(out)
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        out = self.conv3(out)
 | 
			
		||||
        out = self.bn3(out)
 | 
			
		||||
 | 
			
		||||
        if self.downsample is not None:
 | 
			
		||||
            residual = self.downsample(x)
 | 
			
		||||
 | 
			
		||||
        out += residual
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ResNet(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, block, layers, num_classes=1000):
 | 
			
		||||
        self.inplanes = 128
 | 
			
		||||
        super(ResNet, self).__init__()
 | 
			
		||||
        self.conv1 = conv3x3(3, 64, stride=2)
 | 
			
		||||
        self.bn1 = BatchNorm2d(64)
 | 
			
		||||
        self.relu1 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.conv2 = conv3x3(64, 64)
 | 
			
		||||
        self.bn2 = BatchNorm2d(64)
 | 
			
		||||
        self.relu2 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.conv3 = conv3x3(64, 128)
 | 
			
		||||
        self.bn3 = BatchNorm2d(128)
 | 
			
		||||
        self.relu3 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 | 
			
		||||
 | 
			
		||||
        self.layer1 = self._make_layer(block, 64, layers[0])
 | 
			
		||||
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
 | 
			
		||||
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
 | 
			
		||||
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
 | 
			
		||||
        self.avgpool = nn.AvgPool2d(7, stride=1)
 | 
			
		||||
        self.fc = nn.Linear(512 * block.expansion, num_classes)
 | 
			
		||||
 | 
			
		||||
        for m in self.modules():
 | 
			
		||||
            if isinstance(m, nn.Conv2d):
 | 
			
		||||
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
 | 
			
		||||
                m.weight.data.normal_(0, math.sqrt(2. / n))
 | 
			
		||||
            elif isinstance(m, BatchNorm2d):
 | 
			
		||||
                m.weight.data.fill_(1)
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def _make_layer(self, block, planes, blocks, stride=1):
 | 
			
		||||
        downsample = None
 | 
			
		||||
        if stride != 1 or self.inplanes != planes * block.expansion:
 | 
			
		||||
            downsample = nn.Sequential(
 | 
			
		||||
                nn.Conv2d(self.inplanes, planes * block.expansion,
 | 
			
		||||
                          kernel_size=1, stride=stride, bias=False),
 | 
			
		||||
                BatchNorm2d(planes * block.expansion),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        layers = []
 | 
			
		||||
        layers.append(block(self.inplanes, planes, stride, downsample))
 | 
			
		||||
        self.inplanes = planes * block.expansion
 | 
			
		||||
        for i in range(1, blocks):
 | 
			
		||||
            layers.append(block(self.inplanes, planes))
 | 
			
		||||
 | 
			
		||||
        return nn.Sequential(*layers)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.relu1(self.bn1(self.conv1(x)))
 | 
			
		||||
        x = self.relu2(self.bn2(self.conv2(x)))
 | 
			
		||||
        x = self.relu3(self.bn3(self.conv3(x)))
 | 
			
		||||
        x = self.maxpool(x)
 | 
			
		||||
 | 
			
		||||
        x = self.layer1(x)
 | 
			
		||||
        x = self.layer2(x)
 | 
			
		||||
        x = self.layer3(x)
 | 
			
		||||
        x = self.layer4(x)
 | 
			
		||||
 | 
			
		||||
        x = self.avgpool(x)
 | 
			
		||||
        x = x.view(x.size(0), -1)
 | 
			
		||||
        x = self.fc(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def resnet18(pretrained=False, **kwargs):
 | 
			
		||||
    """Constructs a ResNet-18 model.
 | 
			
		||||
    Args:
 | 
			
		||||
        pretrained (bool): If True, returns a model pre-trained on ImageNet
 | 
			
		||||
    """
 | 
			
		||||
    model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
 | 
			
		||||
    if pretrained:
 | 
			
		||||
        model.load_state_dict(load_url(model_urls['resnet18']))
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def resnet50(pretrained=False, **kwargs):
 | 
			
		||||
    """Constructs a ResNet-50 model.
 | 
			
		||||
    Args:
 | 
			
		||||
        pretrained (bool): If True, returns a model pre-trained on ImageNet
 | 
			
		||||
    """
 | 
			
		||||
    model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
 | 
			
		||||
    if pretrained:
 | 
			
		||||
        model.load_state_dict(load_url(model_urls['resnet50']), strict=False)
 | 
			
		||||
    return model
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def resnet101(pretrained=False, **kwargs):
 | 
			
		||||
    """Constructs a ResNet-101 model.
 | 
			
		||||
    Args:
 | 
			
		||||
        pretrained (bool): If True, returns a model pre-trained on ImageNet
 | 
			
		||||
    """
 | 
			
		||||
    model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
 | 
			
		||||
    if pretrained:
 | 
			
		||||
        model.load_state_dict(load_url(model_urls['resnet101']), strict=False)
 | 
			
		||||
    return model
 | 
			
		||||
							
								
								
									
										149
									
								
								vton-api/preprocess/humanparsing/networks/backbone/resnext.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								vton-api/preprocess/humanparsing/networks/backbone/resnext.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,149 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
# -*- encoding: utf-8 -*-
 | 
			
		||||
 | 
			
		||||
"""
 | 
			
		||||
@Author  :   Peike Li
 | 
			
		||||
@Contact :   peike.li@yahoo.com
 | 
			
		||||
@File    :   resnext.py.py
 | 
			
		||||
@Time    :   8/11/19 8:58 PM
 | 
			
		||||
@Desc    :   
 | 
			
		||||
@License :   This source code is licensed under the license found in the 
 | 
			
		||||
             LICENSE file in the root directory of this source tree.
 | 
			
		||||
"""
 | 
			
		||||
import functools
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import math
 | 
			
		||||
from torch.utils.model_zoo import load_url
 | 
			
		||||
 | 
			
		||||
from modules import InPlaceABNSync
 | 
			
		||||
 | 
			
		||||
BatchNorm2d = functools.partial(InPlaceABNSync, activation='none')
 | 
			
		||||
 | 
			
		||||
__all__ = ['ResNeXt', 'resnext101']  # support resnext 101
 | 
			
		||||
 | 
			
		||||
model_urls = {
 | 
			
		||||
    'resnext50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext50-imagenet.pth',
 | 
			
		||||
    'resnext101': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnext101-imagenet.pth'
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def conv3x3(in_planes, out_planes, stride=1):
 | 
			
		||||
    "3x3 convolution with padding"
 | 
			
		||||
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
 | 
			
		||||
                     padding=1, bias=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class GroupBottleneck(nn.Module):
 | 
			
		||||
    expansion = 2
 | 
			
		||||
 | 
			
		||||
    def __init__(self, inplanes, planes, stride=1, groups=1, downsample=None):
 | 
			
		||||
        super(GroupBottleneck, self).__init__()
 | 
			
		||||
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
 | 
			
		||||
        self.bn1 = BatchNorm2d(planes)
 | 
			
		||||
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
 | 
			
		||||
                               padding=1, groups=groups, bias=False)
 | 
			
		||||
        self.bn2 = BatchNorm2d(planes)
 | 
			
		||||
        self.conv3 = nn.Conv2d(planes, planes * 2, kernel_size=1, bias=False)
 | 
			
		||||
        self.bn3 = BatchNorm2d(planes * 2)
 | 
			
		||||
        self.relu = nn.ReLU(inplace=True)
 | 
			
		||||
        self.downsample = downsample
 | 
			
		||||
        self.stride = stride
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        residual = x
 | 
			
		||||
 | 
			
		||||
        out = self.conv1(x)
 | 
			
		||||
        out = self.bn1(out)
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        out = self.conv2(out)
 | 
			
		||||
        out = self.bn2(out)
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        out = self.conv3(out)
 | 
			
		||||
        out = self.bn3(out)
 | 
			
		||||
 | 
			
		||||
        if self.downsample is not None:
 | 
			
		||||
            residual = self.downsample(x)
 | 
			
		||||
 | 
			
		||||
        out += residual
 | 
			
		||||
        out = self.relu(out)
 | 
			
		||||
 | 
			
		||||
        return out
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ResNeXt(nn.Module):
 | 
			
		||||
 | 
			
		||||
    def __init__(self, block, layers, groups=32, num_classes=1000):
 | 
			
		||||
        self.inplanes = 128
 | 
			
		||||
        super(ResNeXt, self).__init__()
 | 
			
		||||
        self.conv1 = conv3x3(3, 64, stride=2)
 | 
			
		||||
        self.bn1 = BatchNorm2d(64)
 | 
			
		||||
        self.relu1 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.conv2 = conv3x3(64, 64)
 | 
			
		||||
        self.bn2 = BatchNorm2d(64)
 | 
			
		||||
        self.relu2 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.conv3 = conv3x3(64, 128)
 | 
			
		||||
        self.bn3 = BatchNorm2d(128)
 | 
			
		||||
        self.relu3 = nn.ReLU(inplace=True)
 | 
			
		||||
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
 | 
			
		||||
 | 
			
		||||
        self.layer1 = self._make_layer(block, 128, layers[0], groups=groups)
 | 
			
		||||
        self.layer2 = self._make_layer(block, 256, layers[1], stride=2, groups=groups)
 | 
			
		||||
        self.layer3 = self._make_layer(block, 512, layers[2], stride=2, groups=groups)
 | 
			
		||||
        self.layer4 = self._make_layer(block, 1024, layers[3], stride=2, groups=groups)
 | 
			
		||||
        self.avgpool = nn.AvgPool2d(7, stride=1)
 | 
			
		||||
        self.fc = nn.Linear(1024 * block.expansion, num_classes)
 | 
			
		||||
 | 
			
		||||
        for m in self.modules():
 | 
			
		||||
            if isinstance(m, nn.Conv2d):
 | 
			
		||||
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels // m.groups
 | 
			
		||||
                m.weight.data.normal_(0, math.sqrt(2. / n))
 | 
			
		||||
            elif isinstance(m, BatchNorm2d):
 | 
			
		||||
                m.weight.data.fill_(1)
 | 
			
		||||
                m.bias.data.zero_()
 | 
			
		||||
 | 
			
		||||
    def _make_layer(self, block, planes, blocks, stride=1, groups=1):
 | 
			
		||||
        downsample = None
 | 
			
		||||
        if stride != 1 or self.inplanes != planes * block.expansion:
 | 
			
		||||
            downsample = nn.Sequential(
 | 
			
		||||
                nn.Conv2d(self.inplanes, planes * block.expansion,
 | 
			
		||||
                          kernel_size=1, stride=stride, bias=False),
 | 
			
		||||
                BatchNorm2d(planes * block.expansion),
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        layers = []
 | 
			
		||||
        layers.append(block(self.inplanes, planes, stride, groups, downsample))
 | 
			
		||||
        self.inplanes = planes * block.expansion
 | 
			
		||||
        for i in range(1, blocks):
 | 
			
		||||
            layers.append(block(self.inplanes, planes, groups=groups))
 | 
			
		||||
 | 
			
		||||
        return nn.Sequential(*layers)
 | 
			
		||||
 | 
			
		||||
    def forward(self, x):
 | 
			
		||||
        x = self.relu1(self.bn1(self.conv1(x)))
 | 
			
		||||
        x = self.relu2(self.bn2(self.conv2(x)))
 | 
			
		||||
        x = self.relu3(self.bn3(self.conv3(x)))
 | 
			
		||||
        x = self.maxpool(x)
 | 
			
		||||
 | 
			
		||||
        x = self.layer1(x)
 | 
			
		||||
        x = self.layer2(x)
 | 
			
		||||
        x = self.layer3(x)
 | 
			
		||||
        x = self.layer4(x)
 | 
			
		||||
 | 
			
		||||
        x = self.avgpool(x)
 | 
			
		||||
        x = x.view(x.size(0), -1)
 | 
			
		||||
        x = self.fc(x)
 | 
			
		||||
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def resnext101(pretrained=False, **kwargs):
 | 
			
		||||
    """Constructs a ResNet-101 model.
 | 
			
		||||
    Args:
 | 
			
		||||
        pretrained (bool): If True, returns a model pre-trained on Places
 | 
			
		||||
    """
 | 
			
		||||
    model = ResNeXt(GroupBottleneck, [3, 4, 23, 3], **kwargs)
 | 
			
		||||
    if pretrained:
 | 
			
		||||
        model.load_state_dict(load_url(model_urls['resnext101']), strict=False)
 | 
			
		||||
    return model
 | 
			
		||||
		Reference in New Issue
	
	Block a user