Add at new repo again

This commit is contained in:
2025-01-28 21:48:35 +00:00
commit 6e660ddb3c
564 changed files with 75575 additions and 0 deletions

View File

@@ -0,0 +1,21 @@
_BASE_: "../../../../configs/Base-RCNN-FPN.yaml"
MODEL:
ROI_HEADS:
NAME: "PointRendROIHeads"
IN_FEATURES: ["p2", "p3", "p4", "p5"]
ROI_BOX_HEAD:
TRAIN_ON_PRED_BOXES: True
ROI_MASK_HEAD:
NAME: "CoarseMaskHead"
FC_DIM: 1024
NUM_FC: 2
OUTPUT_SIDE_RESOLUTION: 7
IN_FEATURES: ["p2"]
POINT_HEAD_ON: True
POINT_HEAD:
FC_DIM: 256
NUM_FC: 3
IN_FEATURES: ["p2"]
INPUT:
# PointRend for instance segmenation does not work with "polygon" mask_format.
MASK_FORMAT: "bitmask"

View File

@@ -0,0 +1,23 @@
_BASE_: Base-PointRend-RCNN-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
MASK_ON: true
RESNETS:
DEPTH: 50
ROI_HEADS:
NUM_CLASSES: 8
POINT_HEAD:
NUM_CLASSES: 8
DATASETS:
TEST: ("cityscapes_fine_instance_seg_val",)
TRAIN: ("cityscapes_fine_instance_seg_train",)
SOLVER:
BASE_LR: 0.01
IMS_PER_BATCH: 8
MAX_ITER: 24000
STEPS: (18000,)
INPUT:
MAX_SIZE_TEST: 2048
MAX_SIZE_TRAIN: 2048
MIN_SIZE_TEST: 1024
MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)

View File

@@ -0,0 +1,9 @@
_BASE_: Base-PointRend-RCNN-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
MASK_ON: true
RESNETS:
DEPTH: 50
# To add COCO AP evaluation against the higher-quality LVIS annotations.
# DATASETS:
# TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied")

View File

@@ -0,0 +1,13 @@
_BASE_: Base-PointRend-RCNN-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
MASK_ON: true
RESNETS:
DEPTH: 50
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
# To add COCO AP evaluation against the higher-quality LVIS annotations.
# DATASETS:
# TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied")

View File

@@ -0,0 +1,20 @@
_BASE_: Base-PointRend-RCNN-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
MASK_ON: true
RESNETS:
DEPTH: 50
ROI_HEADS:
NUM_CLASSES: 1
POINT_HEAD:
NUM_CLASSES: 1
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
IMS_PER_BATCH: 1
# To add COCO AP evaluation against the higher-quality LVIS annotations.
# DATASETS:
# TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied")
DATASETS:
TRAIN: ("CIHP_train",)
TEST: ("CIHP_val",)

View File

@@ -0,0 +1,28 @@
_BASE_: Base-PointRend-RCNN-FPN.yaml
MODEL:
WEIGHTS: "./X-101-32x8d.pkl"
PIXEL_STD: [57.375, 57.120, 58.395]
MASK_ON: true
RESNETS:
STRIDE_IN_1X1: False # this is a C2 model
NUM_GROUPS: 32
WIDTH_PER_GROUP: 8
DEPTH: 101
ROI_HEADS:
NUM_CLASSES: 1
POINT_HEAD:
NUM_CLASSES: 1
SOLVER:
STEPS: (210000, 250000)
MAX_ITER: 270000
IMS_PER_BATCH: 1
# To add COCO AP evaluation against the higher-quality LVIS annotations.
# DATASETS:
# TEST: ("coco_2017_val", "lvis_v0.5_val_cocofied")
INPUT:
MIN_SIZE_TRAIN: (640, 864)
MIN_SIZE_TRAIN_SAMPLING: "range"
MAX_SIZE_TRAIN: 1440
DATASETS:
TRAIN: ("CIHP_train",)
TEST: ("CIHP_val",)

View File

@@ -0,0 +1,19 @@
_BASE_: "../../../../configs/Base-RCNN-FPN.yaml"
MODEL:
META_ARCHITECTURE: "SemanticSegmentor"
BACKBONE:
FREEZE_AT: 0
SEM_SEG_HEAD:
NAME: "PointRendSemSegHead"
POINT_HEAD:
NUM_CLASSES: 54
FC_DIM: 256
NUM_FC: 3
IN_FEATURES: ["p2"]
TRAIN_NUM_POINTS: 1024
SUBDIVISION_STEPS: 2
SUBDIVISION_NUM_POINTS: 8192
COARSE_SEM_SEG_HEAD_NAME: "SemSegFPNHead"
DATASETS:
TRAIN: ("coco_2017_train_panoptic_stuffonly",)
TEST: ("coco_2017_val_panoptic_stuffonly",)

View File

@@ -0,0 +1,33 @@
_BASE_: Base-PointRend-Semantic-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-101.pkl
RESNETS:
DEPTH: 101
SEM_SEG_HEAD:
NUM_CLASSES: 19
POINT_HEAD:
NUM_CLASSES: 19
TRAIN_NUM_POINTS: 2048
SUBDIVISION_NUM_POINTS: 8192
DATASETS:
TRAIN: ("cityscapes_fine_sem_seg_train",)
TEST: ("cityscapes_fine_sem_seg_val",)
SOLVER:
BASE_LR: 0.01
STEPS: (40000, 55000)
MAX_ITER: 65000
IMS_PER_BATCH: 32
INPUT:
MIN_SIZE_TRAIN: (512, 768, 1024, 1280, 1536, 1792, 2048)
MIN_SIZE_TRAIN_SAMPLING: "choice"
MIN_SIZE_TEST: 1024
MAX_SIZE_TRAIN: 4096
MAX_SIZE_TEST: 2048
CROP:
ENABLED: True
TYPE: "absolute"
SIZE: (512, 1024)
SINGLE_CATEGORY_MAX_AREA: 0.75
COLOR_AUG_SSD: True
DATALOADER:
NUM_WORKERS: 16

View File

@@ -0,0 +1,5 @@
_BASE_: Base-PointRend-Semantic-FPN.yaml
MODEL:
WEIGHTS: detectron2://ImageNetPretrained/MSRA/R-50.pkl
RESNETS:
DEPTH: 50