Add at new repo again
This commit is contained in:
@@ -0,0 +1,47 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
|
||||
DENSEPOSE_ON: True
|
||||
ROI_HEADS:
|
||||
NAME: "DensePoseROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseV1ConvXHead"
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
NUM_COARSE_SEGM_CHANNELS: 2
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_train", "densepose_coco_2014_valminusminival")
|
||||
TEST: ("densepose_coco_2014_minival",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.01
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
WARMUP_FACTOR: 0.1
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "iid_iso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "indep_aniso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,10 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
SOLVER:
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "iid_iso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "indep_aniso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,17 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NUM_COARSE_SEGM_CHANNELS: 15
|
||||
POOLER_RESOLUTION: 14
|
||||
HEATMAP_SIZE: 56
|
||||
INDEX_WEIGHTS: 2.0
|
||||
PART_WEIGHTS: 0.3
|
||||
POINT_REGRESSION_WEIGHTS: 0.1
|
||||
DECODER_ON: False
|
||||
SOLVER:
|
||||
BASE_LR: 0.002
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "iid_iso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "indep_aniso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,10 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
SOLVER:
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "iid_iso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,16 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "indep_aniso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,17 @@
|
||||
_BASE_: "Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NUM_COARSE_SEGM_CHANNELS: 15
|
||||
POOLER_RESOLUTION: 14
|
||||
HEATMAP_SIZE: 56
|
||||
INDEX_WEIGHTS: 2.0
|
||||
PART_WEIGHTS: 0.3
|
||||
POINT_REGRESSION_WEIGHTS: 0.1
|
||||
DECODER_ON: False
|
||||
SOLVER:
|
||||
BASE_LR: 0.002
|
||||
MAX_ITER: 130000
|
||||
STEPS: (100000, 120000)
|
||||
@@ -0,0 +1,91 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("base_coco_2017_train",)
|
||||
TEST: ("base_coco_2017_val", "densepose_chimps")
|
||||
CATEGORY_MAPS:
|
||||
"base_coco_2017_train":
|
||||
"16": 1 # bird -> person
|
||||
"17": 1 # cat -> person
|
||||
"18": 1 # dog -> person
|
||||
"19": 1 # horse -> person
|
||||
"20": 1 # sheep -> person
|
||||
"21": 1 # cow -> person
|
||||
"22": 1 # elephant -> person
|
||||
"23": 1 # bear -> person
|
||||
"24": 1 # zebra -> person
|
||||
"25": 1 # girafe -> person
|
||||
"base_coco_2017_val":
|
||||
"16": 1 # bird -> person
|
||||
"17": 1 # cat -> person
|
||||
"18": 1 # dog -> person
|
||||
"19": 1 # horse -> person
|
||||
"20": 1 # sheep -> person
|
||||
"21": 1 # cow -> person
|
||||
"22": 1 # elephant -> person
|
||||
"23": 1 # bear -> person
|
||||
"24": 1 # zebra -> person
|
||||
"25": 1 # girafe -> person
|
||||
WHITELISTED_CATEGORIES:
|
||||
"base_coco_2017_train":
|
||||
- 1 # person
|
||||
- 16 # bird
|
||||
- 17 # cat
|
||||
- 18 # dog
|
||||
- 19 # horse
|
||||
- 20 # sheep
|
||||
- 21 # cow
|
||||
- 22 # elephant
|
||||
- 23 # bear
|
||||
- 24 # zebra
|
||||
- 25 # girafe
|
||||
"base_coco_2017_val":
|
||||
- 1 # person
|
||||
- 16 # bird
|
||||
- 17 # cat
|
||||
- 18 # dog
|
||||
- 19 # horse
|
||||
- 20 # sheep
|
||||
- 21 # cow
|
||||
- 22 # elephant
|
||||
- 23 # bear
|
||||
- 24 # zebra
|
||||
- 25 # girafe
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
||||
@@ -0,0 +1,7 @@
|
||||
_BASE_: "Base-RCNN-FPN-MC.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
DENSEPOSE_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
NAME: "DensePoseDeepLabHead"
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_minival_100",)
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
SOLVER:
|
||||
MAX_ITER: 40
|
||||
STEPS: (30,)
|
||||
@@ -0,0 +1,13 @@
|
||||
_BASE_: "../densepose_rcnn_R_50_FPN_s1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ()
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
MIN_SIZES: (400, 500, 600, 700, 800, 900, 1000, 1100, 1200)
|
||||
MAX_SIZE: 4000
|
||||
FLIP: True
|
||||
EXPECTED_RESULTS: [["bbox_TTA", "AP", 61.74, 0.03], ["densepose_gps_TTA", "AP", 60.22, 0.03], ["densepose_gpsm_TTA", "AP", 63.85, 0.03]]
|
||||
@@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "iid_iso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_minival_100",)
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 40
|
||||
STEPS: (30,)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_DENSEPOSE_HEAD:
|
||||
UV_CONFIDENCE:
|
||||
ENABLED: True
|
||||
TYPE: "indep_aniso"
|
||||
POINT_REGRESSION_WEIGHTS: 0.0005
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_minival_100",)
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
SOLVER:
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
MAX_ITER: 40
|
||||
STEPS: (30,)
|
||||
WARMUP_FACTOR: 0.025
|
||||
@@ -0,0 +1,8 @@
|
||||
_BASE_: "../densepose_rcnn_R_50_FPN_s1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ()
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 59.27, 0.025], ["densepose_gps", "AP", 60.11, 0.02], ["densepose_gpsm", "AP", 64.20, 0.02]]
|
||||
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_minival_100",)
|
||||
TEST: ("densepose_coco_2014_minival_100",)
|
||||
SOLVER:
|
||||
MAX_ITER: 40
|
||||
STEPS: (30,)
|
||||
@@ -0,0 +1,14 @@
|
||||
_BASE_: "../Base-DensePose-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
DATASETS:
|
||||
TRAIN: ("densepose_coco_2014_minival",)
|
||||
TEST: ("densepose_coco_2014_minival",)
|
||||
SOLVER:
|
||||
MAX_ITER: 6000
|
||||
STEPS: (5500, 5800)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 58.27, 1.0], ["densepose_gps", "AP", 42.47, 1.5], ["densepose_gpsm", "AP", 49.20, 1.5]]
|
||||
|
||||
Reference in New Issue
Block a user