Add at new repo again

This commit is contained in:
2025-01-28 21:48:35 +00:00
commit 6e660ddb3c
564 changed files with 75575 additions and 0 deletions

View File

@@ -0,0 +1,49 @@
FROM nvidia/cuda:10.1-cudnn7-devel
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update && apt-get install -y \
python3-opencv ca-certificates python3-dev git wget sudo \
cmake ninja-build protobuf-compiler libprotobuf-dev && \
rm -rf /var/lib/apt/lists/*
RUN ln -sv /usr/bin/python3 /usr/bin/python
# create a non-root user
ARG USER_ID=1000
RUN useradd -m --no-log-init --system --uid ${USER_ID} appuser -g sudo
RUN echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers
USER appuser
WORKDIR /home/appuser
ENV PATH="/home/appuser/.local/bin:${PATH}"
RUN wget https://bootstrap.pypa.io/get-pip.py && \
python3 get-pip.py --user && \
rm get-pip.py
# install dependencies
# See https://pytorch.org/ for other options if you use a different version of CUDA
RUN pip install --user tensorboard cython
RUN pip install --user torch==1.5+cu101 torchvision==0.6+cu101 -f https://download.pytorch.org/whl/torch_stable.html
RUN pip install --user 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
RUN pip install --user 'git+https://github.com/facebookresearch/fvcore'
# install detectron2
RUN git clone https://github.com/facebookresearch/detectron2 detectron2_repo
# set FORCE_CUDA because during `docker build` cuda is not accessible
ENV FORCE_CUDA="1"
# This will by default build detectron2 for all common cuda architectures and take a lot more time,
# because inside `docker build`, there is no way to tell which architecture will be used.
ARG TORCH_CUDA_ARCH_LIST="Kepler;Kepler+Tesla;Maxwell;Maxwell+Tegra;Pascal;Volta;Turing"
ENV TORCH_CUDA_ARCH_LIST="${TORCH_CUDA_ARCH_LIST}"
RUN pip install --user -e detectron2_repo
# Set a fixed model cache directory.
ENV FVCORE_CACHE="/tmp"
WORKDIR /home/appuser/detectron2_repo
# run detectron2 under user "appuser":
# wget http://images.cocodataset.org/val2017/000000439715.jpg -O input.jpg
# python3 demo/demo.py \
#--config-file configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml \
#--input input.jpg --output outputs/ \
#--opts MODEL.WEIGHTS detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl

View File

@@ -0,0 +1,17 @@
FROM nvidia/cuda:10.1-cudnn7-devel
# This dockerfile only aims to provide an environment for unittest on CircleCI
ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update && apt-get install -y \
python3-opencv ca-certificates python3-dev git wget sudo ninja-build && \
rm -rf /var/lib/apt/lists/*
RUN wget -q https://bootstrap.pypa.io/get-pip.py && \
python3 get-pip.py && \
rm get-pip.py
# install dependencies
# See https://pytorch.org/ for other options if you use a different version of CUDA
RUN pip install tensorboard cython
RUN pip install torch==1.5+cu101 torchvision==0.6+cu101 -f https://download.pytorch.org/whl/torch_stable.html
RUN pip install 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

View File

@@ -0,0 +1,36 @@
## Use the container (with docker ≥ 19.03)
```
cd docker/
# Build:
docker build --build-arg USER_ID=$UID -t detectron2:v0 .
# Run:
docker run --gpus all -it \
--shm-size=8gb --env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \
--name=detectron2 detectron2:v0
# Grant docker access to host X server to show images
xhost +local:`docker inspect --format='{{ .Config.Hostname }}' detectron2`
```
## Use the container (with docker < 19.03)
Install docker-compose and nvidia-docker2, then run:
```
cd docker && USER_ID=$UID docker-compose run detectron2
```
#### Using a persistent cache directory
You can prevent models from being re-downloaded on every run,
by storing them in a cache directory.
To do this, add `--volume=$HOME/.torch/fvcore_cache:/tmp:rw` in the run command.
## Install new dependencies
Add the following to `Dockerfile` to make persistent changes.
```
RUN sudo apt-get update && sudo apt-get install -y vim
```
Or run them in the container to make temporary changes.

View File

@@ -0,0 +1,18 @@
version: "2.3"
services:
detectron2:
build:
context: .
dockerfile: Dockerfile
args:
USER_ID: ${USER_ID:-1000}
runtime: nvidia # TODO: Exchange with "gpu: all" in the future (see https://github.com/facebookresearch/detectron2/pull/197/commits/00545e1f376918db4a8ce264d427a07c1e896c5a).
shm_size: "8gb"
ulimits:
memlock: -1
stack: 67108864
volumes:
- /tmp/.X11-unix:/tmp/.X11-unix:ro
environment:
- DISPLAY=$DISPLAY
- NVIDIA_VISIBLE_DEVICES=all