Add at new repo again
This commit is contained in:
@@ -0,0 +1,12 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
@@ -0,0 +1,15 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,36 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 128
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
@@ -0,0 +1,42 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
# WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
WEIGHTS: "model_0039999_e76410.pkl"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
# IMS_PER_BATCH: 128
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_train","VIP_trainval")
|
||||
TEST: ("CIHP_val",)
|
@@ -0,0 +1,25 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NMS_THRESH_TEST: 0.95
|
||||
SCORE_THRESH_TEST: 0.5
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (30000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
DATASETS:
|
||||
TRAIN: ("demo_train",)
|
||||
TEST: ("demo_val",)
|
||||
OUTPUT_DIR: "../../data/DemoDataset/detectron2_prediction"
|
@@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
CLS_AGNOSTIC_MASK: True
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,21 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "GN"
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,24 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "SyncBN"
|
||||
STRIDE_IN_1X1: True
|
||||
FPN:
|
||||
NORM: "SyncBN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "SyncBN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "SyncBN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
||||
TEST:
|
||||
PRECISE_BN:
|
||||
ENABLED: True
|
@@ -0,0 +1,26 @@
|
||||
# A large PanopticFPN for demo purposes.
|
||||
# Use GN on backbone to support semantic seg.
|
||||
# Use Cascade + Deform Conv to improve localization.
|
||||
_BASE_: "../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-101-GN"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
NORM: "GN"
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (105000, 125000)
|
||||
MAX_ITER: 135000
|
||||
IMS_PER_BATCH: 32
|
||||
BASE_LR: 0.04
|
@@ -0,0 +1,24 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "model_0039999_e76410.pkl"
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
STEPS: (140000, 180000)
|
||||
MAX_ITER: 200000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 0
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_train")
|
||||
TEST: ("CIHP_val",)
|
||||
OUTPUT_DIR: "./finetune_output"
|
||||
|
@@ -0,0 +1,26 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "./finetune_ouput/model_final.pth"
|
||||
ROI_HEADS:
|
||||
NMS_THRESH_TEST: 0.95
|
||||
SCORE_THRESH_TEST: 0.5
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (30000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_trainval",)
|
||||
TEST: ("CIHP_test",)
|
||||
OUTPUT_DIR: "./inference_output"
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
# Train from random initialization.
|
||||
WEIGHTS: ""
|
||||
# It makes sense to divide by STD when training from scratch
|
||||
# But it seems to make no difference on the results and C2's models didn't do this.
|
||||
# So we keep things consistent with C2.
|
||||
# PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
MASK_ON: True
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_syncbn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_panoptic_stuffonly",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
Reference in New Issue
Block a user