Add at new repo again
This commit is contained in:
@@ -0,0 +1,18 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "Res5ROIHeads"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@@ -0,0 +1,31 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res5"]
|
||||
RES5_DILATION: 2
|
||||
RPN:
|
||||
IN_FEATURES: ["res5"]
|
||||
PRE_NMS_TOPK_TEST: 6000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["res5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@@ -0,0 +1,42 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@@ -0,0 +1,24 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "RetinaNet"
|
||||
BACKBONE:
|
||||
NAME: "build_retinanet_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: !!python/object/apply:eval ["[[x, x * 2**(1.0/3), x * 2**(2.0/3) ] for x in [32, 64, 128, 256, 512 ]]"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res3", "res4", "res5"]
|
||||
RETINANET:
|
||||
IOU_THRESHOLDS: [0.4, 0.5]
|
||||
IOU_LABELS: [0, -1, 1]
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
BASE_LR: 0.01 # Note that RetinaNet uses a different default learning rate
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@@ -0,0 +1,17 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
LOAD_PROPOSALS: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
PROPOSAL_GENERATOR:
|
||||
NAME: "PrecomputedProposals"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
||||
TEST: ("coco_2017_val",)
|
||||
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
DATALOADER:
|
||||
# proposals are part of the dataset_dicts, and take a lot of RAM
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: False
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,5 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RetinaNet.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
PRE_NMS_TOPK_TEST: 12000
|
||||
POST_NMS_TOPK_TEST: 2000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "ProposalNetwork"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
RPN:
|
||||
POST_NMS_TOPK_TEST: 2000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,6 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,15 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
KEYPOINT_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
||||
RPN:
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,5 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,12 @@
|
||||
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,9 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
MASK_ON: True
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_panoptic_separated",)
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,5 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,27 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
# WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
# For better, more stable performance initialize from COCO
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 8
|
||||
# This is similar to the setting used in Mask R-CNN paper, Appendix A
|
||||
# But there are some differences, e.g., we did not initialize the output
|
||||
# layer using the corresponding classes from COCO
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (800, 832, 864, 896, 928, 960, 992, 1024)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "choice"
|
||||
MIN_SIZE_TEST: 1024
|
||||
MAX_SIZE_TRAIN: 2048
|
||||
MAX_SIZE_TEST: 2048
|
||||
DATASETS:
|
||||
TRAIN: ("cityscapes_fine_instance_seg_train",)
|
||||
TEST: ("cityscapes_fine_instance_seg_val",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
STEPS: (18000,)
|
||||
MAX_ITER: 24000
|
||||
IMS_PER_BATCH: 8
|
||||
TEST:
|
||||
EVAL_PERIOD: 8000
|
@@ -0,0 +1,83 @@
|
||||
|
||||
Detectron2 model zoo's experimental settings and a few implementation details are different from Detectron.
|
||||
|
||||
The differences in implementation details are shared in
|
||||
[Compatibility with Other Libraries](../../docs/notes/compatibility.md).
|
||||
|
||||
The differences in model zoo's experimental settings include:
|
||||
* Use scale augmentation during training. This improves AP with lower training cost.
|
||||
* Use L1 loss instead of smooth L1 loss for simplicity. This sometimes improves box AP but may
|
||||
affect other AP.
|
||||
* Use `POOLER_SAMPLING_RATIO=0` instead of 2. This does not significantly affect AP.
|
||||
* Use `ROIAlignV2`. This does not significantly affect AP.
|
||||
|
||||
In this directory, we provide a few configs that __do not__ have the above changes.
|
||||
They mimic Detectron's behavior as close as possible,
|
||||
and provide a fair comparison of accuracy and speed against Detectron.
|
||||
|
||||
<!--
|
||||
./gen_html_table.py --config 'Detectron1-Comparisons/*.yaml' --name "Faster R-CNN" "Keypoint R-CNN" "Mask R-CNN" --fields lr_sched train_speed inference_speed mem box_AP mask_AP keypoint_AP --base-dir ../../../configs/Detectron1-Comparisons
|
||||
-->
|
||||
|
||||
|
||||
<table><tbody>
|
||||
<!-- START TABLE -->
|
||||
<!-- TABLE HEADER -->
|
||||
<th valign="bottom">Name</th>
|
||||
<th valign="bottom">lr<br/>sched</th>
|
||||
<th valign="bottom">train<br/>time<br/>(s/iter)</th>
|
||||
<th valign="bottom">inference<br/>time<br/>(s/im)</th>
|
||||
<th valign="bottom">train<br/>mem<br/>(GB)</th>
|
||||
<th valign="bottom">box<br/>AP</th>
|
||||
<th valign="bottom">mask<br/>AP</th>
|
||||
<th valign="bottom">kp.<br/>AP</th>
|
||||
<th valign="bottom">model id</th>
|
||||
<th valign="bottom">download</th>
|
||||
<!-- TABLE BODY -->
|
||||
<!-- ROW: faster_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="faster_rcnn_R_50_FPN_noaug_1x.yaml">Faster R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.219</td>
|
||||
<td align="center">0.038</td>
|
||||
<td align="center">3.1</td>
|
||||
<td align="center">36.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781054</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/model_final_7ab50c.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/faster_rcnn_R_50_FPN_noaug_1x/137781054/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: keypoint_rcnn_R_50_FPN_1x -->
|
||||
<tr><td align="left"><a href="keypoint_rcnn_R_50_FPN_1x.yaml">Keypoint R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.313</td>
|
||||
<td align="center">0.071</td>
|
||||
<td align="center">5.0</td>
|
||||
<td align="center">53.1</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">64.2</td>
|
||||
<td align="center">137781195</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/model_final_cce136.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/keypoint_rcnn_R_50_FPN_1x/137781195/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
<!-- ROW: mask_rcnn_R_50_FPN_noaug_1x -->
|
||||
<tr><td align="left"><a href="mask_rcnn_R_50_FPN_noaug_1x.yaml">Mask R-CNN</a></td>
|
||||
<td align="center">1x</td>
|
||||
<td align="center">0.273</td>
|
||||
<td align="center">0.043</td>
|
||||
<td align="center">3.4</td>
|
||||
<td align="center">37.8</td>
|
||||
<td align="center">34.9</td>
|
||||
<td align="center"></td>
|
||||
<td align="center">137781281</td>
|
||||
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/model_final_62ca52.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/Detectron1-Comparisons/mask_rcnn_R_50_FPN_noaug_1x/137781281/metrics.json">metrics</a></td>
|
||||
</tr>
|
||||
</tbody></table>
|
||||
|
||||
## Comparisons:
|
||||
|
||||
* Faster R-CNN: Detectron's AP is 36.7, similar to ours.
|
||||
* Keypoint R-CNN: Detectron's AP is box 53.6, keypoint 64.2. Fixing a Detectron's
|
||||
[bug](https://github.com/facebookresearch/Detectron/issues/459) lead to a drop in box AP, and can be
|
||||
compensated back by some parameter tuning.
|
||||
* Mask R-CNN: Detectron's AP is box 37.7, mask 33.9. We're 1 AP better in mask AP, due to more correct implementation.
|
||||
|
||||
For speed comparison, see [benchmarks](https://detectron2.readthedocs.io/notes/benchmarks.html).
|
@@ -0,0 +1,17 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
@@ -0,0 +1,27 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2
|
||||
# 1000 proposals per-image is found to hurt box AP.
|
||||
# Therefore we increase it to 1500 per-image.
|
||||
POST_NMS_TOPK_TRAIN: 1500
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_train",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
@@ -0,0 +1,20 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
# Detectron1 uses smooth L1 loss with some magic beta values.
|
||||
# The defaults are changed to L1 loss in Detectron2.
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.1111
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
ROI_MASK_HEAD:
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
POOLER_TYPE: "ROIAlign"
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@@ -0,0 +1,23 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
||||
PIXEL_STD: [57.375, 57.120, 58.395]
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 101
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1230
|
||||
SCORE_THRESH_TEST: 0.0001
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
DATASETS:
|
||||
TRAIN: ("lvis_v0.5_train",)
|
||||
TEST: ("lvis_v0.5_val",)
|
||||
TEST:
|
||||
DETECTIONS_PER_IMAGE: 300 # LVIS allows up to 300
|
||||
DATALOADER:
|
||||
SAMPLER_TRAIN: "RepeatFactorTrainingSampler"
|
||||
REPEAT_THRESHOLD: 0.001
|
@@ -0,0 +1,12 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
@@ -0,0 +1,15 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,36 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 128
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
@@ -0,0 +1,42 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
# WEIGHTS: "catalog://ImageNetPretrained/FAIR/X-152-32x8d-IN5k"
|
||||
WEIGHTS: "model_0039999_e76410.pkl"
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False # this is a C2 model
|
||||
NUM_GROUPS: 32
|
||||
WIDTH_PER_GROUP: 8
|
||||
DEPTH: 152
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
ROI_HEADS:
|
||||
NAME: "CascadeROIHeads"
|
||||
NUM_CLASSES: 1
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NUM_CONV: 8
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
# IMS_PER_BATCH: 128
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (35000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.16
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_train","VIP_trainval")
|
||||
TEST: ("CIHP_val",)
|
@@ -0,0 +1,25 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
ROI_HEADS:
|
||||
NMS_THRESH_TEST: 0.95
|
||||
SCORE_THRESH_TEST: 0.5
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (30000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
DATASETS:
|
||||
TRAIN: ("demo_train",)
|
||||
TEST: ("demo_val",)
|
||||
OUTPUT_DIR: "../../data/DemoDataset/detectron2_prediction"
|
@@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
CLS_AGNOSTIC_MASK: True
|
@@ -0,0 +1,8 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True] # on Res3,Res4,Res5
|
||||
DEFORM_MODULATED: False
|
||||
SOLVER:
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,21 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-50-GN"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "GN"
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "GN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
@@ -0,0 +1,24 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
NORM: "SyncBN"
|
||||
STRIDE_IN_1X1: True
|
||||
FPN:
|
||||
NORM: "SyncBN"
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_CONV: 4
|
||||
NUM_FC: 1
|
||||
NORM: "SyncBN"
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "SyncBN"
|
||||
SOLVER:
|
||||
# 3x schedule
|
||||
STEPS: (210000, 250000)
|
||||
MAX_ITER: 270000
|
||||
TEST:
|
||||
PRECISE_BN:
|
||||
ENABLED: True
|
@@ -0,0 +1,26 @@
|
||||
# A large PanopticFPN for demo purposes.
|
||||
# Use GN on backbone to support semantic seg.
|
||||
# Use Cascade + Deform Conv to improve localization.
|
||||
_BASE_: "../COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "catalog://ImageNetPretrained/FAIR/R-101-GN"
|
||||
RESNETS:
|
||||
DEPTH: 101
|
||||
NORM: "GN"
|
||||
DEFORM_ON_PER_STAGE: [False, True, True, True]
|
||||
STRIDE_IN_1X1: False
|
||||
FPN:
|
||||
NORM: "GN"
|
||||
ROI_HEADS:
|
||||
NAME: CascadeROIHeads
|
||||
ROI_BOX_HEAD:
|
||||
CLS_AGNOSTIC_BBOX_REG: True
|
||||
ROI_MASK_HEAD:
|
||||
NORM: "GN"
|
||||
RPN:
|
||||
POST_NMS_TOPK_TRAIN: 2000
|
||||
SOLVER:
|
||||
STEPS: (105000, 125000)
|
||||
MAX_ITER: 135000
|
||||
IMS_PER_BATCH: 32
|
||||
BASE_LR: 0.04
|
@@ -0,0 +1,24 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "model_0039999_e76410.pkl"
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 16
|
||||
STEPS: (140000, 180000)
|
||||
MAX_ITER: 200000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
EVAL_PERIOD: 0
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_train")
|
||||
TEST: ("CIHP_val",)
|
||||
OUTPUT_DIR: "./finetune_output"
|
||||
|
@@ -0,0 +1,26 @@
|
||||
_BASE_: "cascade_mask_rcnn_X_152_32x8d_FPN_IN5k_gn_dconv.yaml"
|
||||
MODEL:
|
||||
MASK_ON: True
|
||||
WEIGHTS: "./finetune_ouput/model_final.pth"
|
||||
ROI_HEADS:
|
||||
NMS_THRESH_TEST: 0.95
|
||||
SCORE_THRESH_TEST: 0.5
|
||||
NUM_CLASSES: 1
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 1
|
||||
STEPS: (30000, 45000)
|
||||
MAX_ITER: 50000
|
||||
BASE_LR: 0.02
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 864)
|
||||
MIN_SIZE_TRAIN_SAMPLING: "range"
|
||||
MAX_SIZE_TRAIN: 1440
|
||||
CROP:
|
||||
ENABLED: True
|
||||
TEST:
|
||||
AUG:
|
||||
ENABLED: True
|
||||
DATASETS:
|
||||
TRAIN: ("CIHP_trainval",)
|
||||
TEST: ("CIHP_test",)
|
||||
OUTPUT_DIR: "./inference_output"
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
# Train from random initialization.
|
||||
WEIGHTS: ""
|
||||
# It makes sense to divide by STD when training from scratch
|
||||
# But it seems to make no difference on the results and C2's models didn't do this.
|
||||
# So we keep things consistent with C2.
|
||||
# PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
MASK_ON: True
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_gn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "mask_rcnn_R_50_FPN_3x_syncbn.yaml"
|
||||
MODEL:
|
||||
PIXEL_STD: [57.375, 57.12, 58.395]
|
||||
WEIGHTS: ""
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
STRIDE_IN_1X1: False
|
||||
BACKBONE:
|
||||
FREEZE_AT: 0
|
||||
SOLVER:
|
||||
# 9x schedule
|
||||
IMS_PER_BATCH: 64 # 4x the standard
|
||||
STEPS: (187500, 197500) # last 60/4==15k and last 20/4==5k
|
||||
MAX_ITER: 202500 # 90k * 9 / 4
|
||||
BASE_LR: 0.08
|
||||
TEST:
|
||||
EVAL_PERIOD: 2500
|
||||
# NOTE: Please refer to Rethinking ImageNet Pre-training https://arxiv.org/abs/1811.08883
|
||||
# to learn what you need for training from scratch.
|
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_panoptic_stuffonly",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
@@ -0,0 +1,18 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 20
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
||||
MIN_SIZE_TEST: 800
|
||||
DATASETS:
|
||||
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
|
||||
TEST: ('voc_2007_test',)
|
||||
SOLVER:
|
||||
STEPS: (12000, 16000)
|
||||
MAX_ITER: 18000 # 17.4 epochs
|
||||
WARMUP_ITERS: 100
|
@@ -0,0 +1,18 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: False
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
NUM_CLASSES: 20
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800)
|
||||
MIN_SIZE_TEST: 800
|
||||
DATASETS:
|
||||
TRAIN: ('voc_2007_trainval', 'voc_2012_trainval')
|
||||
TEST: ('voc_2007_test',)
|
||||
SOLVER:
|
||||
STEPS: (12000, 16000)
|
||||
MAX_ITER: 18000 # 17.4 epochs
|
||||
WARMUP_ITERS: 100
|
@@ -0,0 +1,42 @@
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "GeneralizedRCNN"
|
||||
BACKBONE:
|
||||
NAME: "build_resnet_fpn_backbone"
|
||||
RESNETS:
|
||||
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
FPN:
|
||||
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||||
ANCHOR_GENERATOR:
|
||||
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||||
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||||
RPN:
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||||
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||||
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||||
# Detectron1 uses 2000 proposals per-batch,
|
||||
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||||
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||||
POST_NMS_TOPK_TRAIN: 1000
|
||||
POST_NMS_TOPK_TEST: 1000
|
||||
ROI_HEADS:
|
||||
NAME: "StandardROIHeads"
|
||||
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||||
ROI_BOX_HEAD:
|
||||
NAME: "FastRCNNConvFCHead"
|
||||
NUM_FC: 2
|
||||
POOLER_RESOLUTION: 7
|
||||
ROI_MASK_HEAD:
|
||||
NAME: "MaskRCNNConvUpsampleHead"
|
||||
NUM_CONV: 4
|
||||
POOLER_RESOLUTION: 14
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_train",)
|
||||
TEST: ("coco_2017_val",)
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 2
|
||||
BASE_LR: 0.02
|
||||
STEPS: (60000, 80000)
|
||||
MAX_ITER: 90000
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
VERSION: 2
|
@@ -0,0 +1 @@
|
||||
These are quick configs for performance or accuracy regression tracking purposes.
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://Misc/cascade_mask_rcnn_R_50_FPN_3x/144998488/model_final_480dd8.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 50.18, 0.02], ["segm", "AP", 43.87, 0.02]]
|
@@ -0,0 +1,11 @@
|
||||
_BASE_: "../Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/fast_rcnn_R_50_FPN_1x/137635226/model_final_e5f7ce.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 45.70, 0.02]]
|
@@ -0,0 +1,15 @@
|
||||
_BASE_: "../COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
TEST: ("coco_2017_val_100",)
|
||||
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x/137849621/model_final_a6e10b.pkl"
|
||||
DATASETS:
|
||||
TEST: ("keypoints_coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 52.47, 0.02], ["keypoints", "AP", 67.36, 0.02]]
|
@@ -0,0 +1,14 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val_100",)
|
||||
TEST: ("keypoints_coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,30 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
NORMALIZE_LOSS_BY_VISIBLE_KEYPOINTS: False
|
||||
LOSS_WEIGHT: 4.0
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.33333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 55.35, 1.0], ["keypoints", "AP", 76.91, 1.0]]
|
@@ -0,0 +1,28 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
KEYPOINT_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
NUM_CLASSES: 1
|
||||
ROI_KEYPOINT_HEAD:
|
||||
POOLER_RESOLUTION: 14
|
||||
POOLER_SAMPLING_RATIO: 2
|
||||
ROI_BOX_HEAD:
|
||||
SMOOTH_L1_BETA: 1.0 # Keypoint AP degrades when using plain L1 loss
|
||||
RPN:
|
||||
SMOOTH_L1_BETA: 0.2 # Keypoint AP degrades when using plain L1 loss
|
||||
DATASETS:
|
||||
TRAIN: ("keypoints_coco_2017_val",)
|
||||
TEST: ("keypoints_coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.33333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 53.5, 1.0], ["keypoints", "AP", 72.4, 1.0]]
|
@@ -0,0 +1,18 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.001
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
CLIP_GRADIENTS:
|
||||
ENABLED: True
|
||||
CLIP_TYPE: "value"
|
||||
CLIP_VALUE: 1.0
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x/137849525/model_final_4ce675.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.37, 0.02], ["segm", "AP", 40.99, 0.02]]
|
@@ -0,0 +1,14 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.001
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,22 @@
|
||||
_BASE_: "../Base-RCNN-C4.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val",)
|
||||
TEST: ("coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (600,)
|
||||
MAX_SIZE_TRAIN: 1000
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1000
|
||||
SOLVER:
|
||||
IMS_PER_BATCH: 8 # base uses 16
|
||||
WARMUP_FACTOR: 0.33333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (11000, 11600)
|
||||
MAX_ITER: 12000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 41.88, 0.7], ["segm", "AP", 33.79, 0.5]]
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x/137849551/model_final_84107b.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.44, 0.02], ["segm", "AP", 42.94, 0.02]]
|
@@ -0,0 +1,10 @@
|
||||
_BASE_: "../COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x/137849600/model_final_f10217.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 47.34, 0.02], ["segm", "AP", 42.67, 0.02], ["bbox_TTA", "AP", 49.11, 0.02], ["segm_TTA", "AP", 45.04, 0.02]]
|
||||
AUG:
|
||||
ENABLED: True
|
||||
MIN_SIZES: (700, 800) # to save some time
|
@@ -0,0 +1,14 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,21 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
ROI_HEADS:
|
||||
BATCH_SIZE_PER_IMAGE: 256
|
||||
MASK_ON: True
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val",)
|
||||
TEST: ("coco_2017_val",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (600,)
|
||||
MAX_SIZE_TRAIN: 1000
|
||||
MIN_SIZE_TEST: 800
|
||||
MAX_SIZE_TEST: 1000
|
||||
SOLVER:
|
||||
WARMUP_FACTOR: 0.3333333
|
||||
WARMUP_ITERS: 100
|
||||
STEPS: (5500, 5800)
|
||||
MAX_ITER: 6000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 42.0, 1.6], ["segm", "AP", 35.4, 1.25]]
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-PanopticSegmentation/panoptic_fpn_R_50_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-PanopticSegmentation/panoptic_fpn_R_50_3x/139514569/model_final_c10459.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100_panoptic_separated",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 46.47, 0.02], ["segm", "AP", 43.39, 0.02], ["sem_seg", "mIoU", 42.55, 0.02], ["panoptic_seg", "PQ", 38.99, 0.02]]
|
@@ -0,0 +1,19 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_100_panoptic_separated",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 1
|
@@ -0,0 +1,20 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "PanopticFPN"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
MASK_ON: True
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
SEM_SEG_HEAD:
|
||||
LOSS_WEIGHT: 0.5
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_panoptic_separated",)
|
||||
TEST: ("coco_2017_val_panoptic_separated",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
WARMUP_FACTOR: 0.001
|
||||
WARMUP_ITERS: 500
|
||||
STEPS: (5500,)
|
||||
MAX_ITER: 7000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 46.70, 1.1], ["segm", "AP", 38.73, 0.7], ["sem_seg", "mIoU", 64.73, 1.2], ["panoptic_seg", "PQ", 48.13, 0.8]]
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-Detection/retinanet_R_50_FPN_3x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/retinanet_R_50_FPN_3x/137849486/model_final_4cafe0.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["bbox", "AP", 44.36, 0.02]]
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "../COCO-Detection/retinanet_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,7 @@
|
||||
_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/model_final_02ce48.pkl"
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["box_proposals", "AR@1000", 58.16, 0.02]]
|
@@ -0,0 +1,13 @@
|
||||
_BASE_: "../COCO-Detection/rpn_R_50_FPN_1x.yaml"
|
||||
MODEL:
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100",)
|
||||
TEST: ("coco_2017_val_100",)
|
||||
SOLVER:
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
BASE_LR: 0.005
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,10 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://semantic_R_50_FPN_1x/111802073/model_final_c18079783c55a94968edc28b7101c5f0.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TEST: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["sem_seg", "mIoU", 39.53, 0.02], ["sem_seg", "mACC", 51.50, 0.02]]
|
@@ -0,0 +1,18 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_100_panoptic_stuffonly",)
|
||||
INPUT:
|
||||
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||||
SOLVER:
|
||||
BASE_LR: 0.005
|
||||
STEPS: (30,)
|
||||
MAX_ITER: 40
|
||||
IMS_PER_BATCH: 4
|
||||
DATALOADER:
|
||||
NUM_WORKERS: 2
|
@@ -0,0 +1,20 @@
|
||||
_BASE_: "../Base-RCNN-FPN.yaml"
|
||||
MODEL:
|
||||
META_ARCHITECTURE: "SemanticSegmentor"
|
||||
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
||||
RESNETS:
|
||||
DEPTH: 50
|
||||
DATASETS:
|
||||
TRAIN: ("coco_2017_val_panoptic_stuffonly",)
|
||||
TEST: ("coco_2017_val_panoptic_stuffonly",)
|
||||
SOLVER:
|
||||
BASE_LR: 0.01
|
||||
WARMUP_FACTOR: 0.001
|
||||
WARMUP_ITERS: 300
|
||||
STEPS: (5500,)
|
||||
MAX_ITER: 7000
|
||||
TEST:
|
||||
EXPECTED_RESULTS: [["sem_seg", "mIoU", 76.51, 1.0], ["sem_seg", "mACC", 83.25, 1.0]]
|
||||
INPUT:
|
||||
# no scale augmentation
|
||||
MIN_SIZE_TRAIN: (800, )
|
Reference in New Issue
Block a user