46 lines
1.3 KiB
Markdown
46 lines
1.3 KiB
Markdown
|
|
||
|
This directory contains a few scripts that use detectron2.
|
||
|
|
||
|
|
||
|
* `train_net.py`
|
||
|
|
||
|
An example training script that's made to train builtin models of detectron2.
|
||
|
|
||
|
For usage, see [GETTING_STARTED.md](../GETTING_STARTED.md).
|
||
|
|
||
|
* `plain_train_net.py`
|
||
|
|
||
|
Similar to `train_net.py`, but implements a training loop instead of using `Trainer`.
|
||
|
This script includes fewer features but it may be more friendly to hackers.
|
||
|
|
||
|
* `benchmark.py`
|
||
|
|
||
|
Benchmark the training speed, inference speed or data loading speed of a given config.
|
||
|
|
||
|
Usage:
|
||
|
```
|
||
|
python benchmark.py --config-file config.yaml --task train/eval/data [optional DDP flags]
|
||
|
```
|
||
|
|
||
|
* `visualize_json_results.py`
|
||
|
|
||
|
Visualize the json instance detection/segmentation results dumped by `COCOEvalutor` or `LVISEvaluator`
|
||
|
|
||
|
Usage:
|
||
|
```
|
||
|
python visualize_json_results.py --input x.json --output dir/ --dataset coco_2017_val
|
||
|
```
|
||
|
If not using a builtin dataset, you'll need your own script or modify this script.
|
||
|
|
||
|
* `visualize_data.py`
|
||
|
|
||
|
Visualize ground truth raw annotations or training data (after preprocessing/augmentations).
|
||
|
|
||
|
Usage:
|
||
|
```
|
||
|
python visualize_data.py --config-file config.yaml --source annotation/dataloader --output-dir dir/ [--show]
|
||
|
```
|
||
|
|
||
|
NOTE: the script does not stop by itself when using `--source dataloader` because a training
|
||
|
dataloader is usually infinite.
|