43 lines
1.3 KiB
YAML
43 lines
1.3 KiB
YAML
|
MODEL:
|
||
|
META_ARCHITECTURE: "GeneralizedRCNN"
|
||
|
BACKBONE:
|
||
|
NAME: "build_resnet_fpn_backbone"
|
||
|
RESNETS:
|
||
|
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
||
|
FPN:
|
||
|
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
||
|
ANCHOR_GENERATOR:
|
||
|
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
||
|
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
||
|
RPN:
|
||
|
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
||
|
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
||
|
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
||
|
# Detectron1 uses 2000 proposals per-batch,
|
||
|
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
||
|
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
||
|
POST_NMS_TOPK_TRAIN: 1000
|
||
|
POST_NMS_TOPK_TEST: 1000
|
||
|
ROI_HEADS:
|
||
|
NAME: "StandardROIHeads"
|
||
|
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
||
|
ROI_BOX_HEAD:
|
||
|
NAME: "FastRCNNConvFCHead"
|
||
|
NUM_FC: 2
|
||
|
POOLER_RESOLUTION: 7
|
||
|
ROI_MASK_HEAD:
|
||
|
NAME: "MaskRCNNConvUpsampleHead"
|
||
|
NUM_CONV: 4
|
||
|
POOLER_RESOLUTION: 14
|
||
|
DATASETS:
|
||
|
TRAIN: ("coco_2017_train",)
|
||
|
TEST: ("coco_2017_val",)
|
||
|
SOLVER:
|
||
|
IMS_PER_BATCH: 2
|
||
|
BASE_LR: 0.02
|
||
|
STEPS: (60000, 80000)
|
||
|
MAX_ITER: 90000
|
||
|
INPUT:
|
||
|
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
||
|
VERSION: 2
|