68 lines
2.0 KiB
Python
68 lines
2.0 KiB
Python
|
# Openpose
|
||
|
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
|
||
|
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
|
||
|
# 3rd Edited by ControlNet
|
||
|
# 4th Edited by ControlNet (added face and correct hands)
|
||
|
|
||
|
import os
|
||
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
||
|
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from . import util
|
||
|
from .wholebody import Wholebody
|
||
|
|
||
|
def draw_pose(pose, H, W):
|
||
|
bodies = pose['bodies']
|
||
|
faces = pose['faces']
|
||
|
hands = pose['hands']
|
||
|
candidate = bodies['candidate']
|
||
|
subset = bodies['subset']
|
||
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)
|
||
|
|
||
|
canvas = util.draw_bodypose(canvas, candidate, subset)
|
||
|
|
||
|
canvas = util.draw_handpose(canvas, hands)
|
||
|
|
||
|
canvas = util.draw_facepose(canvas, faces)
|
||
|
|
||
|
return canvas
|
||
|
|
||
|
|
||
|
class DWposeDetector:
|
||
|
def __init__(self, model_root, device):
|
||
|
|
||
|
self.pose_estimation = Wholebody(model_root, device)
|
||
|
|
||
|
def __call__(self, oriImg):
|
||
|
oriImg = oriImg.copy()
|
||
|
H, W, C = oriImg.shape
|
||
|
with torch.no_grad():
|
||
|
candidate, subset = self.pose_estimation(oriImg)
|
||
|
nums, keys, locs = candidate.shape
|
||
|
candidate[..., 0] /= float(W)
|
||
|
candidate[..., 1] /= float(H)
|
||
|
body = candidate[:,:18].copy()
|
||
|
body = body.reshape(nums*18, locs)
|
||
|
ori_score = subset[:,:18].copy()
|
||
|
score = subset[:,:18].copy()
|
||
|
for i in range(len(score)):
|
||
|
for j in range(len(score[i])):
|
||
|
if score[i][j] > 0.3:
|
||
|
score[i][j] = int(18*i+j)
|
||
|
else:
|
||
|
score[i][j] = -1
|
||
|
|
||
|
un_visible = subset<0.3
|
||
|
candidate[un_visible] = -1
|
||
|
|
||
|
foot = candidate[:,18:24]
|
||
|
|
||
|
faces = candidate[:,24:92]
|
||
|
|
||
|
hands = candidate[:,92:113]
|
||
|
hands = np.vstack([hands, candidate[:,113:]])
|
||
|
|
||
|
bodies = dict(candidate=body, subset=score)
|
||
|
pose = dict(bodies=bodies, hands=hands, faces=faces)
|
||
|
return draw_pose(pose, H, W), body, ori_score, candidate
|