38 lines
1.1 KiB
Python
38 lines
1.1 KiB
Python
from api import predict, app
|
|
from api.functions import download_image
|
|
import os
|
|
import uvicorn
|
|
|
|
model = predict.load_model('nsfw_detector/nsfw_model.h5')
|
|
|
|
|
|
@app.get("/")
|
|
async def detect_nsfw(url: str):
|
|
if not url:
|
|
return {"ERROR": "URL PARAMETER EMPTY"}
|
|
image = await download_image(url)
|
|
if not image:
|
|
return {"ERROR": "IMAGE SIZE TOO LARGE OR INCORRECT URL"}
|
|
results = predict.classify(model, image)
|
|
os.remove(image)
|
|
hentai = results['data']['hentai']
|
|
sexy = results['data']['sexy']
|
|
porn = results['data']['porn']
|
|
drawings = results['data']['drawings']
|
|
neutral = results['data']['neutral']
|
|
if neutral >= 25:
|
|
results['data']['is_nsfw'] = False
|
|
return results
|
|
elif (sexy + porn + hentai) >= 70:
|
|
results['data']['is_nsfw'] = True
|
|
return results
|
|
elif drawings >= 40:
|
|
results['data']['is_nsfw'] = False
|
|
return results
|
|
else:
|
|
results['data']['is_nsfw'] = False
|
|
return results
|
|
|
|
if __name__ == "__main__":
|
|
uvicorn.run("api:app", host="0.0.0.0", port=8000, log_level="info")
|