first commit

This commit is contained in:
taphix 2024-07-19 23:10:58 +03:00
commit 067056629b
11 changed files with 299 additions and 0 deletions

11
Dockerfile Normal file
View File

@ -0,0 +1,11 @@
FROM python:3.9
WORKDIR /app
COPY requirements.txt .
RUN pip install -U pip && pip install -r requirements.txt
COPY . .
CMD python -m api

1
Readme.md Normal file
View File

@ -0,0 +1 @@
# TEST API

4
api/__init__.py Normal file
View File

@ -0,0 +1,4 @@
from fastapi import FastAPI
from nsfw_detector import predict
app = FastAPI()

37
api/__main__.py Normal file
View File

@ -0,0 +1,37 @@
from api import predict, app
from api.functions import download_image
import os
import uvicorn
model = predict.load_model('nsfw_detector/nsfw_model.h5')
@app.get("/")
async def detect_nsfw(url: str):
if not url:
return {"ERROR": "URL PARAMETER EMPTY"}
image = await download_image(url)
if not image:
return {"ERROR": "IMAGE SIZE TOO LARGE OR INCORRECT URL"}
results = predict.classify(model, image)
os.remove(image)
hentai = results['data']['hentai']
sexy = results['data']['sexy']
porn = results['data']['porn']
drawings = results['data']['drawings']
neutral = results['data']['neutral']
if neutral >= 25:
results['data']['is_nsfw'] = False
return results
elif (sexy + porn + hentai) >= 70:
results['data']['is_nsfw'] = True
return results
elif drawings >= 40:
results['data']['is_nsfw'] = False
return results
else:
results['data']['is_nsfw'] = False
return results
if __name__ == "__main__":
uvicorn.run("api:app", host="0.0.0.0", port=8000, log_level="info")

20
api/functions.py Normal file
View File

@ -0,0 +1,20 @@
from random import randint
import aiohttp
import aiofiles
MAX_IMAGE_SIZE = 5 * 1000000
async def download_image(url):
file_name = f"{randint(6969, 6999)}.jpg"
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
if resp.status == 200:
if int(resp.headers['Content-Length']) > MAX_IMAGE_SIZE:
return False
f = await aiofiles.open(file_name, mode='wb')
await f.write(await resp.read())
await f.close()
else:
return False
return file_name

45
docker-compose.yml Normal file
View File

@ -0,0 +1,45 @@
version: '3'
services:
api:
build: .
ports:
- '8000:8000'
nginx:
image: nginx
container_name: my-nginx
restart: always
volumes:
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
- ./nginx/robots.txt:/var/www/html/robots.txt
- etc-letsencrypt:/etc/letsencrypt
- www-html:/var/www/html
ports:
- "80:80"
- "443:443"
networks:
- api_default
certbot:
image: certbot/certbot
container_name: certbot
volumes:
- etc-letsencrypt:/etc/letsencrypt
- www-html:/var/www/html
depends_on:
- nginx
command: certonly --webroot -w /var/www/html --email me@abakuka.ru -d nsfw.wizardstech.ru --cert-name=nsfw.wizardstech.ru --key-type rsa --agree-tos
ports:
- "6000:80"
networks:
- api_default
volumes:
some_volume:
www-html:
etc-letsencrypt:
networks:
api_default:
external: true

54
nginx/nginx.conf Normal file
View File

@ -0,0 +1,54 @@
user www-data;
worker_processes auto;
pid /run/nginx.pid;
include /etc/nginx/modules-enabled/*.conf;
events {
worker_connections 1024;
}
http {
sendfile on;
tcp_nopush on;
types_hash_max_size 2048;
include /etc/nginx/mime.types;
default_type application/octet-stream;
server {
listen 80;
server_name nsfw.wizardstech.ru;
location /.well-known/acme-challenge {
allow all;
root /var/www/html;
}
location / {
return 301 https://$host$request_uri;
}
}
server {
listen 443 ssl;
server_name nsfw.wizardstech.ru;
root /var/www/html;
ssl_certificate /etc/letsencrypt/live/certfolder/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/certfolder/privkey.pem;
location / {
proxy_set_header Host $http_host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_pass http://api:8000;
}
location /.well-known/acme-challenge {
allow all;
root /var/www/html;
}
location /robots.txt {
root /var/www/html;
}
}
}

View File

@ -0,0 +1 @@
# init

BIN
nsfw_detector/nsfw_model.h5 Normal file

Binary file not shown.

119
nsfw_detector/predict.py Normal file
View File

@ -0,0 +1,119 @@
import argparse
import json
from os import listdir
from os.path import isfile, join, exists, isdir, abspath
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub
IMAGE_DIM = 224 # required/default image dimensionality
def load_images(image_paths, image_size, verbose=True):
'''
Function for loading images into numpy arrays for passing to model.predict
inputs:
image_paths: list of image paths to load
image_size: size into which images should be resized
verbose: show all of the image path and sizes loaded
outputs:
loaded_images: loaded images on which keras model can run predictions
loaded_image_indexes: paths of images which the function is able to process
'''
loaded_images = []
loaded_image_paths = []
if isdir(image_paths):
parent = abspath(image_paths)
image_paths = [join(parent, f) for f in listdir(
image_paths) if isfile(join(parent, f))]
elif isfile(image_paths):
image_paths = [image_paths]
for img_path in image_paths:
try:
if verbose:
print(img_path, "size:", image_size)
image = keras.preprocessing.image.load_img(
img_path, target_size=image_size)
image = keras.preprocessing.image.img_to_array(image)
image /= 255
loaded_images.append(image)
loaded_image_paths.append(img_path)
except Exception as ex:
print("Image Load Failure: ", img_path, ex)
return np.asarray(loaded_images), loaded_image_paths
def load_model(model_path):
if model_path is None or not exists(model_path):
raise ValueError(
"saved_model_path must be the valid directory of a saved model to load.")
model = tf.keras.models.load_model(model_path, custom_objects={
'KerasLayer': hub.KerasLayer})
return model
def classify(model, input_paths, image_dim=IMAGE_DIM):
""" Classify given a model, input paths (could be single string), and image dimensionality...."""
images, image_paths = load_images(input_paths, (image_dim, image_dim))
probs = classify_nd(model, images)
return dict(zip(['data'], probs))
def classify_nd(model, nd_images):
""" Classify given a model, image array (numpy)...."""
model_preds = model.predict(nd_images)
# preds = np.argsort(model_preds, axis = 1).tolist()
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
probs = []
for i, single_preds in enumerate(model_preds):
single_probs = {}
for j, pred in enumerate(single_preds):
single_probs[categories[j]] = round(float(pred), 6) * 100
probs.append(single_probs)
return probs
def main(args=None):
parser = argparse.ArgumentParser(
description="""A script to perform NFSW classification of images""",
epilog="""
Launch with default model and a test image
python nsfw_detector/predict.py --saved_model_path mobilenet_v2_140_224 --image_source test.jpg
""", formatter_class=argparse.RawTextHelpFormatter)
submain = parser.add_argument_group(
'main execution and evaluation functionality')
submain.add_argument('--image_source', dest='image_source', type=str, required=True,
help='A directory of images or a single image to classify')
submain.add_argument('--saved_model_path', dest='saved_model_path', type=str, required=True,
help='The model to load')
submain.add_argument('--image_dim', dest='image_dim', type=int, default=IMAGE_DIM,
help="The square dimension of the model's input shape")
if args is not None:
config = vars(parser.parse_args(args))
else:
config = vars(parser.parse_args())
if config['image_source'] is None or not exists(config['image_source']):
raise ValueError(
"image_source must be a valid directory with images or a single image to classify.")
model = load_model(config['saved_model_path'])
image_preds = classify(model, config['image_source'], config['image_dim'])
print(json.dumps(image_preds, indent=2), '\n')
if __name__ == "__main__":
main()

7
requirements.txt Normal file
View File

@ -0,0 +1,7 @@
fastapi
uvicorn
aiohttp
aiofiles
tensorflow
tensorflow-hub
pillow