nsfw-api/nsfw_detector/predict.py

120 lines
4.2 KiB
Python
Raw Normal View History

2024-07-19 20:10:58 +00:00
import argparse
import json
from os import listdir
from os.path import isfile, join, exists, isdir, abspath
import numpy as np
import tensorflow as tf
from tensorflow import keras
import tensorflow_hub as hub
IMAGE_DIM = 224 # required/default image dimensionality
def load_images(image_paths, image_size, verbose=True):
'''
Function for loading images into numpy arrays for passing to model.predict
inputs:
image_paths: list of image paths to load
image_size: size into which images should be resized
verbose: show all of the image path and sizes loaded
outputs:
loaded_images: loaded images on which keras model can run predictions
loaded_image_indexes: paths of images which the function is able to process
'''
loaded_images = []
loaded_image_paths = []
if isdir(image_paths):
parent = abspath(image_paths)
image_paths = [join(parent, f) for f in listdir(
image_paths) if isfile(join(parent, f))]
elif isfile(image_paths):
image_paths = [image_paths]
for img_path in image_paths:
try:
if verbose:
print(img_path, "size:", image_size)
image = keras.preprocessing.image.load_img(
img_path, target_size=image_size)
image = keras.preprocessing.image.img_to_array(image)
image /= 255
loaded_images.append(image)
loaded_image_paths.append(img_path)
except Exception as ex:
print("Image Load Failure: ", img_path, ex)
return np.asarray(loaded_images), loaded_image_paths
def load_model(model_path):
if model_path is None or not exists(model_path):
raise ValueError(
"saved_model_path must be the valid directory of a saved model to load.")
model = tf.keras.models.load_model(model_path, custom_objects={
'KerasLayer': hub.KerasLayer})
return model
def classify(model, input_paths, image_dim=IMAGE_DIM):
""" Classify given a model, input paths (could be single string), and image dimensionality...."""
images, image_paths = load_images(input_paths, (image_dim, image_dim))
probs = classify_nd(model, images)
return dict(zip(['data'], probs))
def classify_nd(model, nd_images):
""" Classify given a model, image array (numpy)...."""
model_preds = model.predict(nd_images)
# preds = np.argsort(model_preds, axis = 1).tolist()
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
probs = []
for i, single_preds in enumerate(model_preds):
single_probs = {}
for j, pred in enumerate(single_preds):
single_probs[categories[j]] = round(float(pred), 6) * 100
probs.append(single_probs)
return probs
def main(args=None):
parser = argparse.ArgumentParser(
description="""A script to perform NFSW classification of images""",
epilog="""
Launch with default model and a test image
python nsfw_detector/predict.py --saved_model_path mobilenet_v2_140_224 --image_source test.jpg
""", formatter_class=argparse.RawTextHelpFormatter)
submain = parser.add_argument_group(
'main execution and evaluation functionality')
submain.add_argument('--image_source', dest='image_source', type=str, required=True,
help='A directory of images or a single image to classify')
submain.add_argument('--saved_model_path', dest='saved_model_path', type=str, required=True,
help='The model to load')
submain.add_argument('--image_dim', dest='image_dim', type=int, default=IMAGE_DIM,
help="The square dimension of the model's input shape")
if args is not None:
config = vars(parser.parse_args(args))
else:
config = vars(parser.parse_args())
if config['image_source'] is None or not exists(config['image_source']):
raise ValueError(
"image_source must be a valid directory with images or a single image to classify.")
model = load_model(config['saved_model_path'])
image_preds = classify(model, config['image_source'], config['image_dim'])
print(json.dumps(image_preds, indent=2), '\n')
if __name__ == "__main__":
main()